Suppr超能文献

用于提高诊断放射学准确性的散射截面计算。I. 康普顿散射光子的能量展宽

Calculation of scattering cross sections for increased accuracy in diagnostic radiology. I. Energy broadening of Compton-scattered photons.

作者信息

Carlsson G A, Carlsson C A, Berggren K F, Ribberfors R

出版信息

Med Phys. 1982 Nov-Dec;9(6):868-79. doi: 10.1118/1.595195.

Abstract

In this work, scattering cross sections differential with respect to both the scattering angle and the energy of the scattered photon are derived in the relativistic impulse approximation for the light elements H, Be, and Al, and photon energies between 30 and 200 keV. The energy broadening of the scattered photons reflects the momentum distribution of the target electrons. It increases with both increasing atomic number of the scatterer and with scattering angle. Even in light elements, the energy broadening is comparable with the intrinsic energy resolution of modern Ge spectrometers. In reconstructing primary photon energy spectra by means of a Ge spectrometer and Compton scattering techniques, i.e., by measuring the photons incoherently scattered at a given angle, the energy resolution is markedly impaired compared to direct measurements in the primary beam. This is usually explained as an effect of the nonzero acceptance angle of the detector. It is shown, however, that the fundamental energy broadening of the scattered photons is alone sufficient as an explanation. The Compton scattering technique is valuable in determining energy spectra in clinical situations. Aspects of its optimal performance are discussed. The commonly used scattering angle of 90 degrees seems adequate. At small scattering angles, the incoherent-scattering cross section is badly known due to electron-electron interactions and, for photon energies less than 100 keV, coherent scattering contributes appreciably to the total scattering even in media of low atomic number. In cases where coherent scattering dominates and where the energy degradation of the incoherently scattered photons is small compared to the energy resolution of the spectrometer, the reconstruction is simplified. The double-differential cross sections derived can be used to simplify calculations of the Compton component of the mass-energy absorption coefficient.

摘要

在这项工作中,针对轻元素氢、铍和铝以及能量在30至200 keV之间的光子,在相对论脉冲近似下推导了相对于散射角和散射光子能量的微分散射截面。散射光子的能量展宽反映了靶电子的动量分布。它随散射体原子序数的增加以及散射角的增大而增大。即使在轻元素中,能量展宽也与现代锗谱仪的固有能量分辨率相当。在用锗谱仪和康普顿散射技术重建初级光子能谱时,即通过测量在给定角度非相干散射的光子,与在初级束中的直接测量相比,能量分辨率会明显受损。这通常被解释为探测器非零接收角的影响。然而,结果表明,仅散射光子的基本能量展宽就足以解释这一现象。康普顿散射技术在临床情况下确定能谱方面很有价值。讨论了其最佳性能的相关方面。常用的90度散射角似乎是合适的。在小散射角下,由于电子 - 电子相互作用,非相干散射截面很难准确得知,并且对于能量小于100 keV的光子,即使在低原子序数介质中,相干散射对总散射也有显著贡献。在相干散射占主导且非相干散射光子的能量降解与谱仪的能量分辨率相比很小时,重建过程会简化。所推导的双微分截面可用于简化质能吸收系数的康普顿分量的计算。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验