Suppr超能文献

确定抽样方案中的参数估计方面。

Aspects of parameter estimation in ascertainment sampling schemes.

作者信息

Ewens W J

出版信息

Am J Hum Genet. 1982 Nov;34(6):853-65.

Abstract

It has recently been suggested that ascertainment sampling estimation procedures commonly used are not fully efficient in that the number of unobserved families is an unknown parameter that should be estimated (contrary to common practice) along with the genetic parameters for fully efficient estimation. It has also been suggested that the frequency distribution of family size contains unknown parameters that should similarly be estimated with the genetic parameters. These two suggestions are considered in this paper. It is shown by means of an equivalence theorem that in both cases the estimates and their variances obtained by adopting the suggested procedure are identical with those found by ignoring the unobserved families and by ignoring the family-size distribution. This demonstration leads to a formal justification of further procedures, in particular: (1) use of "method-of-moments" estimators, (2) ignoring the ascertainment scheme in some cases when estimating parameters, and (3) forming estimates of parameters when various parts of the data are obtained by different ascertainment schemes.

摘要

最近有人提出,常用的确定抽样估计程序并非完全有效,因为未观察到的家庭数量是一个未知参数,为了进行完全有效的估计,应该(与通常做法相反)与遗传参数一起进行估计。还有人提出,家庭规模的频率分布包含未知参数,同样应该与遗传参数一起进行估计。本文考虑了这两个建议。通过一个等价定理表明,在这两种情况下,采用建议程序获得的估计值及其方差与忽略未观察到的家庭和忽略家庭规模分布所得到的估计值及其方差是相同的。这一证明为进一步的程序提供了形式上的依据,特别是:(1)使用“矩估计法”估计量;(2)在某些情况下估计参数时忽略确定方案;(3)当数据的不同部分通过不同的确定方案获得时,形成参数估计值。

相似文献

4
Stoppage: an issue for segregation analysis.
Genet Epidemiol. 2001 Apr;20(3):328-39. doi: 10.1002/gepi.4.
10
A resolution of the ascertainment sampling problem: IV. Continuous phenotypes.
Genet Epidemiol. 1988;5(6):433-44. doi: 10.1002/gepi.1370050607.

引用本文的文献

1
Conditional and unconditional likelihood solutions.
Am J Hum Genet. 1984 Jan;36(1):232-4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验