Marcati P, Pozio M A
J Math Biol. 1980 Apr;9(2):179-87. doi: 10.1007/BF00275920.
We analyze the global behaviour of a vector disease model which involves spatial spread and hereditary effects. This model can be applied to investigate growth and spread of malaria. No immunization is considered. We prove that, if the recovery rate is less than or equal to a threshold value, the disease dies out, otherwise the infectious people density tends to a homogeneous distribution. Our results follow using contracting convexes techniques and agree with the results given by K. L. Cooke for the model without diffusion.
我们分析了一个涉及空间传播和遗传效应的病媒疾病模型的全局行为。该模型可用于研究疟疾的生长和传播。不考虑免疫情况。我们证明,如果恢复率小于或等于一个阈值,疾病就会消亡,否则感染人群密度会趋于均匀分布。我们的结果是使用收缩凸技术得出的,并且与K. L. 库克给出的无扩散模型的结果一致。