Volz R
J Math Biol. 1982;15(3):319-38. doi: 10.1007/BF00275691.
In this paper a periodic delay differential equation with spatial spread is investigated. This equation can be used to model the growth of malaria which is transmitted by a mosquito. Using monotone techniques, it is shown that the following bifurcation holds: either the disease dies out or the density of infectious people tends to a spatially homogeneous, time periodic and positive solution.
本文研究了一个具有空间扩散的周期延迟微分方程。该方程可用于模拟由蚊子传播的疟疾的传播情况。利用单调技巧,证明了以下分岔情况成立:要么疾病灭绝,要么感染人群的密度趋于一个空间均匀、时间周期且为正的解。