Suppr超能文献

基于房室模型方法估计肿瘤发病率和生长情况:癌症潜伏期模型的研究

Compartment model approach to the estimation of tumor incidence and growth: investigation of a model of cancer latency.

作者信息

Tolley H D, Burdick D, Manton K G, Stallard E

出版信息

Biometrics. 1978 Sep;34(3):377-89.

PMID:719121
Abstract

Consideration is made of the problems involved in determining the effects of a chronic disease process, such as stomach cancer, on the observed mortality of the U.S. population. Specifically, since the time of initiation of tumor growth is unknown and the tumor becomes clinically manifest only after reaching considerable size, the early rate and pattern of tumor growth is unobserved. As a possible solution to the analysis of such problems, it is proposed to use stochastic compartment modelling techniques which deal with the problems of estimating the transition probabilities of a partially observed stochastic process. Implementation of the stochastic compartment techniques in this case depends on the selection of certain mathematical expressions from theories of carcinogenesis, epidemiologic studies and animal studies which allow the calculation of transition probabilities to unobserved states by making them explicit functions of time or age. Though the selection of the specific functions might be subject to debate, the general strategy of explicitly selecting such functions, and thereby exposing them for review in terms of biologic reasonableness and consistency with the data, seems to be a valid and useful methodology. Furthermore, various ways of viewing the model results (say from its internal behavior, e.g., from implied distributions of waiting times in various disease states) yield different insights into the various factors in carcinogenesis. The model, with parameters representing tumor incidence, time to tumor death given onset, genetic susceptibility to tumor growth and the effects of competing forces of mortality, is fitted to data on deaths due to stomach cancer for male U.S. residents age 25 and over in 1969. Two basic forms of the model, one with a waiting time distribution for occupants of the latent state and another with a single latency time, achieved excellent fits to the data. Examination of parameter estimates and compartment waiting time distributions are consistent with theoretical expectations and intuition. It is concluded that such strategies, involving the integration of clinical, experimental and vital statistics data into a comprehensive model of population carcinogenesis, are potentially powerful tools for investigation of the temporal dimensions of disease development in a human population.

摘要

本文考虑了确定诸如胃癌等慢性疾病过程对美国人口观察到的死亡率的影响所涉及的问题。具体而言,由于肿瘤生长开始的时间未知,且肿瘤只有在达到相当大的尺寸后才会出现临床症状,因此肿瘤生长的早期速率和模式无法观察到。作为分析此类问题的一种可能解决方案,建议使用随机隔室建模技术,该技术用于处理估计部分观察到的随机过程的转移概率的问题。在这种情况下,随机隔室技术的实施取决于从致癌理论、流行病学研究和动物研究中选择某些数学表达式,这些表达式通过使转移概率成为时间或年龄的显式函数来计算到未观察状态的转移概率。尽管特定函数的选择可能存在争议,但明确选择此类函数并从而使其在生物学合理性和与数据的一致性方面接受审查的总体策略似乎是一种有效且有用的方法。此外,从不同角度查看模型结果(例如从其内部行为,例如从各种疾病状态下隐含的等待时间分布)可以对致癌作用中的各种因素产生不同的见解。该模型的参数表示肿瘤发病率、发病后肿瘤死亡时间以及肿瘤生长的遗传易感性和竞争死亡力的影响,该模型被拟合到1969年25岁及以上美国男性居民因胃癌死亡的数据。该模型的两种基本形式,一种具有潜伏状态占用者的等待时间分布,另一种具有单一潜伏期,均与数据拟合得非常好。对参数估计和隔室等待时间分布的检查与理论预期和直觉一致。得出的结论是,这种将临床、实验和生命统计数据整合到人口致癌作用综合模型中的策略,可能是研究人群中疾病发展时间维度的有力工具。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验