Tsubaki M, Srivastava R B, Yu N T
Biochemistry. 1981 Feb 17;20(4):946-52. doi: 10.1021/bi00507a047.
Resonance Raman spectroscopy has been employed to study the thermal spin equilibria in metmyoglobin azide [Fe(III)Mb-N3] and methemoglobin azide [Fe(III)-Hb-N3]. The effect of temperature on Raman intensities permits us to assign lines to either high- or low-spin species. With excitation at 647.1 nm the intensity of an 15N3 isotope-sensitive mode at approximately 411 cm-1 was found to increase with decreasing temperature, indicating that its origin may not be the high-spin charge-transfer band at approximately 640 nm as suggested by Asher & Schuster [Asher, S. A. & Schuster, T. M. (1979) Biochemistry 18, 5377]. Instead, it may be enhanced via the weaker low-spin z-polarized charge-transfer band at approximately 650 nm which was identified by Eaton & Hochstrasser [Eaton, W. A., & Hochstrasser, R. M. (1968) J. Chem. Phys. 49, 985]. Our normal coordinate analysis on the model azide-Fe-imidazole and the polarized nature of the line allow us to establish that the approximate 411-cm-1 mode in Fe(III)Mb-N3 and Fe(III)Hb-N3 is assignable to the Fe-N3 stretch of low-spin species. Furthermore, we assign the out of plane azide mode (low spin) to the depolarized line at 573 cm-1 (15N3 isotope sensitive), which was previously assigned as the Fe-N3 stretch by Desbois et al. [Desbois, A., Lutz, M., & Banerjee, R. (1979) Biochemistry 18, 1510]. No internal vibrations of bound azide excitation at 406.7 nm, we have observed the enhancement of the antisymmetric azide stretch (both high and low spin), out of plane bending (low spin), and Fe-N3 stretch (low spin), indicating the existence of at least two charge-transfer transitions underlying the strong Soret band. The following four types of charge transfer are discussed in the light of our present resonance Raman data: (1) porphyrin (pi) leads to high-spin Fe (d pi), (2) azide (n) leads to low-spin iron (dz2), (3) azide (pi) leads to low-spin iron (dz2), and (4) azide (pi) leads to porphyrin (pi) (high spin).
共振拉曼光谱已被用于研究高铁肌红蛋白叠氮化物[Fe(III)Mb-N3]和高铁血红蛋白叠氮化物[Fe(III)-Hb-N3]中的热自旋平衡。温度对拉曼强度的影响使我们能够将谱线归属于高自旋或低自旋物种。在647.1 nm激发下,发现约411 cm-1处的15N3同位素敏感模式的强度随温度降低而增加,这表明其起源可能并非如阿舍和舒斯特[阿舍,S. A. & 舒斯特,T. M. (1979)《生物化学》18, 5377]所提出的约640 nm处的高自旋电荷转移带。相反,它可能是通过约650 nm处较弱的低自旋z极化电荷转移带增强的,该带由伊顿和霍赫施特拉塞尔[伊顿,W. A.,& 霍赫施特拉塞尔,R. M. (1968)《化学物理杂志》49, 985]所确定。我们对叠氮化物 - 铁 - 咪唑模型的正规坐标分析以及谱线的极化性质使我们能够确定,Fe(III)Mb-N3和Fe(III)Hb-N3中约411 cm-1的模式可归属于低自旋物种的Fe-N3伸缩振动。此外,我们将面外叠氮化物模式(低自旋)归属于573 cm-1处的非极化谱线(15N3同位素敏感),该谱线先前被德布瓦等人[德布瓦,A.,卢茨,M.,& 班纳吉,R. (1979)《生物化学》18, 1510]归为Fe-N3伸缩振动。在406.7 nm处没有观察到结合叠氮化物激发的内部振动,我们观察到反对称叠氮化物伸缩振动(高自旋和低自旋)、面外弯曲振动(低自旋)和Fe-N3伸缩振动(低自旋)的增强,这表明在强Soret带之下至少存在两种电荷转移跃迁。根据我们目前的共振拉曼数据,讨论了以下四种电荷转移类型:(1) 卟啉(π)导致高自旋铁(dπ),(2) 叠氮化物(n)导致低自旋铁(dz2),(3) 叠氮化物(π)导致低自旋铁(dz2),以及(4) 叠氮化物(π)导致卟啉(π)(高自旋)。