Messana C, Cerdonio M, Shenkin P, Noble R W, Fermi G, Perutz R N, Perutz M F
Biochemistry. 1978 Aug 22;17(17):3652-62. doi: 10.1021/bi00610a035.
We have measured the paramagnetic susceptibilities of sperm whale azide metmyoglobin and of carp azide, thiocyanate, and nitrite methemoglobin in the quaternary oxy (R) and deoxy (T) structures between about 300 and 90 K, using a new sensitive superconducting magnetometer. We have also measured the pressure dependence of the high- and low-spin optical absorption bands of azide metmyoglobin and of carp azide methemoglobin in the R and T structures between 1 and 2000-4000 atmospheres. At low temperatures all the derivatives show normal Curie behavior, but above 200-250 K this is reversed, so that a thermal spin equilibrium is set up and the paramagnetic susceptibilities rise steeply with rising temperature. At all temperatures the effective magnetic moments in the T structure are higher than in the R structure. The magnetic data for azide methemoglobin have been subjected to detailed analysis. Below 250 K the magnetic moment in the R structure is 1.98 microB, characteristic of pure low spin, but that in the T structure is 2.80 microB, suggestive of a random mixture of high- and low-spin centers which have become frozen in by the immobility of the surrounding protein. Comparison of the thermal spin equilibria above 250 K shows that in the T structure the equilibrium is biased toward higher spin by the equivalent of about 1 kcal/mol relative to the R structure. Hydrostatic pressure reduces the optical density of the high-spin band at 630 nm and increases that of the low-spin bands at 541 and 573 nm. We have calibrated the optical density of the band at 630 nm against the measured paramagnetic susceptibilities of sperm whale azide metmyoglobin and carp azide methemoglobin in the R and T structures and have used this calibration to determine the dependence of the spin equilibria on hydrostatic pressure; this has allowed us to calculate the volume contraction associated with the transition from the fully high to the fully low-spin state. This amounts to -6.7 and -13.3 mL/mol heme for carp azide methemoglobins in the R and T structures, respectively, and to -12.5 mL/mol heme for azide metmyoglobin. These volume contractions are larger than those of about -4 mL/mol Fe found in synthetic iron chelates. Apparently stereochemical changes of the globin surrounding the heme also contribute to the volume changes; these must be larger in the T than in the R structure. The significance of these observations for the mechanism of heme-heme interaction is discussed.
我们使用一种新型灵敏的超导磁力计,测量了抹香鲸叠氮高铁肌红蛋白以及鲤鱼叠氮、硫氰酸盐和亚硝酸盐高铁血红蛋白在大约300K至90K之间的四级氧合(R)和脱氧(T)结构中的顺磁磁化率。我们还测量了叠氮高铁肌红蛋白和鲤鱼叠氮高铁血红蛋白在R和T结构中,1至2000 - 4000个大气压之间的高自旋和低自旋光吸收带的压力依赖性。在低温下,所有衍生物都表现出正常的居里行为,但在200 - 250K以上这种行为会反转,从而建立起热自旋平衡,顺磁磁化率随温度升高而急剧上升。在所有温度下,T结构中的有效磁矩都高于R结构。已对叠氮高铁血红蛋白的磁性数据进行了详细分析。在250K以下,R结构中的磁矩为1.98微玻尔,是纯低自旋的特征,但T结构中的磁矩为2.80微玻尔,表明高自旋和低自旋中心的随机混合物已因周围蛋白质的固定而冻结。对250K以上热自旋平衡的比较表明,相对于R结构,在T结构中平衡偏向更高自旋,相当于约1千卡/摩尔。静水压力会降低630nm处高自旋带的光密度,并增加541和573nm处低自旋带的光密度。我们已根据抹香鲸叠氮高铁肌红蛋白和鲤鱼叠氮高铁血红蛋白在R和T结构中测量的顺磁磁化率,校准了630nm处带的光密度,并使用此校准来确定自旋平衡对静水压力的依赖性;这使我们能够计算与从完全高自旋态到完全低自旋态转变相关的体积收缩。对于R和T结构中的鲤鱼叠氮高铁血红蛋白,这分别相当于 - 6.7和 - 13.3毫升/摩尔血红素,对于叠氮高铁肌红蛋白则为 - 12.5毫升/摩尔血红素。这些体积收缩比在合成铁螯合物中发现的约 - 4毫升/摩尔铁的收缩更大。显然,血红素周围球蛋白的立体化学变化也对体积变化有贡献;这些变化在T结构中一定比在R结构中更大。讨论了这些观察结果对血红素 - 血红素相互作用机制的意义。