Suppr超能文献

一种用于心脏浦肯野纤维束的裂隙模型。

A cleft model for cardiac Purkinje strands.

作者信息

Levin D N, Fozzard H A

出版信息

Biophys J. 1981 Mar;33(3):383-408. doi: 10.1016/S0006-3495(81)84902-8.

Abstract

Conduction of the action potential in cardiac muscle is complicated by its multicellular structure, with narrow intercellular clefts and cell-to-cell coupling. A model is developed from anatomical data to describe cardiac Purkinje strands of variable diameter and different internal arrangements of cells. The admittance of the model is solved analytically and fit to results of cable analysis. Using the extracted specific membrane and cell electrical parameters (Rm = 13 K omega cm2, Cm = 1.5 mu F/cm2, Ri = 100 mu cm, and Re = 50 omega cm), the model correctly predicted conduction velocity and filling of capacitance at the onset of a voltage step. The analysis permits more complete studies of the factors controlling conduction velocity; for instance, the effect on conduction velocity of a capacity in the longitudinal current circuit is discussed. Predictions of the impedance and phase angle were also made. Measurements of the frequency dependence of phase angle may provide a basis for separating cleft membrane properties from those of the surface membrane and may aid the measurement of nonlinear membrane properties in muscle.

摘要

心肌动作电位的传导因其多细胞结构、狭窄的细胞间隙和细胞间耦合而变得复杂。根据解剖学数据建立了一个模型,以描述直径可变且细胞内部排列不同的心脏浦肯野纤维束。对该模型的导纳进行了解析求解,并与电缆分析结果进行拟合。利用提取的特定膜和细胞电学参数(Rm = 13 KΩ·cm²,Cm = 1.5 μF/cm²,Ri = 100 μΩ·cm,Re = 50 Ω·cm),该模型正确预测了电压阶跃开始时的传导速度和电容充电情况。该分析允许对控制传导速度的因素进行更全面的研究;例如,讨论了纵向电流回路中电容对传导速度的影响。还对阻抗和相角进行了预测。相角频率依赖性的测量可能为区分缝隙膜特性与表面膜特性提供基础,并可能有助于测量肌肉中的非线性膜特性。

相似文献

1
A cleft model for cardiac Purkinje strands.
Biophys J. 1981 Mar;33(3):383-408. doi: 10.1016/S0006-3495(81)84902-8.
2
Electrical properties of sheep Purkinje strands. Electrical and chemical potentials in the clefts.
Biophys J. 1983 Nov;44(2):225-48. doi: 10.1016/S0006-3495(83)84295-7.
3
The influence of intercellular clefts on the electrical properties of sheep cardiac Purkinje fibers.
Biophys J. 1979 Feb;25(2 Pt 1):217-34. doi: 10.1016/s0006-3495(79)85287-x.
4
Effect of stretch on conduction velocity and cable properties of cardiac Purkinje fibers.
Am J Physiol. 1979 Sep;237(3):C119-24. doi: 10.1152/ajpcell.1979.237.3.C119.
5
The relation of Vmax to INa, GNa, and h infinity in a model of the cardiac Purkinje fiber.
Biophys J. 1979 Mar;25(3):407-20. doi: 10.1016/S0006-3495(79)85312-6.
7
Activity-dependent extracellular K+ fluctuations in canine Purkinje fibres.
Nature. 1980 Jul 3;286(5768):68-71. doi: 10.1038/286068a0.
8
Experimental study of the conducted action potential in cardiac Purkinje strands.
Biophys J. 1983 Oct;44(1):1-8. doi: 10.1016/S0006-3495(83)84272-6.
9
Impulse responses of automaticity in the Purkinje fiber.
Biophys J. 1984 Apr;45(4):841-9. doi: 10.1016/S0006-3495(84)84228-9.
10
Linear analysis of membrane conductance and capacitance in cardiac Purkinje fibres.
J Physiol. 1974 Dec;243(3):661-94. doi: 10.1113/jphysiol.1974.sp010771.

引用本文的文献

1
Surface capacity of electrically syncytial tissues.
Biophys J. 1981 Jul;35(1):127-46. doi: 10.1016/S0006-3495(81)84779-0.
2
The conducted action potential. Models and comparison to experiments.
Biophys J. 1983 Oct;44(1):9-26. doi: 10.1016/S0006-3495(83)84273-8.
3
Experimental study of the conducted action potential in cardiac Purkinje strands.
Biophys J. 1983 Oct;44(1):1-8. doi: 10.1016/S0006-3495(83)84272-6.
4
Electrical properties of sheep Purkinje strands. Electrical and chemical potentials in the clefts.
Biophys J. 1983 Nov;44(2):225-48. doi: 10.1016/S0006-3495(83)84295-7.
5
The electrical potential produced by a strand of cardiac muscle: a bidomain analysis.
Ann Biomed Eng. 1988;16(6):609-37. doi: 10.1007/BF02368018.
6
Intracellular pH and cell-to-cell transmission in sheep Purkinje fibers.
Biophys J. 1989 Jan;55(1):53-65. doi: 10.1016/S0006-3495(89)82780-8.

本文引用的文献

1
LINEAR ELECTRICAL PROPERTIES OF STRIATED MUSCLE FIBRES OBSERVED WITH INTRACELLULAR ELECTRODES.
Proc R Soc Lond B Biol Sci. 1964 Apr 14;160:69-123. doi: 10.1098/rspb.1964.0030.
2
Capacity of muscle fiber membrane.
Am J Physiol. 1957 Mar;188(3):423-9. doi: 10.1152/ajplegacy.1957.188.3.423.
3
The electrical constants of Purkinje fibres.
J Physiol. 1952 Nov;118(3):348-60. doi: 10.1113/jphysiol.1952.sp004799.
4
Cardiac muscle. A comparative study of Purkinje fibers and ventricular fibers.
J Cell Biol. 1968 Mar;36(3):497-526. doi: 10.1083/jcb.36.3.497.
6
The structural implications of the linear electrical properties of cardiac Purkinje strands.
J Gen Physiol. 1970 Apr;55(4):524-47. doi: 10.1085/jgp.55.4.524.
7
The kinetics of mechanical activation in frog muscle.
J Physiol. 1969 Sep;204(1):207-30. doi: 10.1113/jphysiol.1969.sp008909.
8
The surface area of sheep cardiac Purkinje fibres.
J Physiol. 1972 Feb;220(3):547-63. doi: 10.1113/jphysiol.1972.sp009722.
9
Circuit models of the passive electrical properties of frog skeletal muscle fibers.
J Gen Physiol. 1974 Apr;63(4):432-59. doi: 10.1085/jgp.63.4.432.
10
Strength-duration curves in cardiac Purkinje fibres: effects of liminal length and charge distribution.
J Physiol. 1972 Nov;226(3):593-618. doi: 10.1113/jphysiol.1972.sp009999.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验