Suppr超能文献

青蛙骨骼肌纤维被动电学特性的电路模型。

Circuit models of the passive electrical properties of frog skeletal muscle fibers.

作者信息

Valdiosera R, Clausen C, Eisenberg R S

出版信息

J Gen Physiol. 1974 Apr;63(4):432-59. doi: 10.1085/jgp.63.4.432.

Abstract

The relation between the fine structure, electric field equations, and electric circuit models of skeletal muscle fibers is discussed. Experimental evidence illustrates the profound variation of potential with circumferential position, even at low frequencies (100 Hz). Since one-dimensional cable theory cannot account for such variation, three-dimensional cable theory must be used. Several circuit models of a sarcomere are presented and plots are made of the predicted phase angle between sinusoidal applied current and potential. The circuit models are described by equations involving normalized variables, since they affect the phase plot in a relatively simple way. A method is presented for estimating the values of the circuit elements and the standard deviation of the estimates. The reliability of the estimates is discussed. An objective measure of fit, Hamilton's R test, is used to test the significance of different fits to data. Finally, it is concluded that none of the proposed circuit models provides an adequate description of the observed variation of phase angle with circumferential location. It is not clear whether the source of disagreement is inadequate measurements or inadequate theory.

摘要

本文讨论了骨骼肌纤维的精细结构、电场方程和电路模型之间的关系。实验证据表明,即使在低频(100Hz)下,电位也会随圆周位置发生显著变化。由于一维电缆理论无法解释这种变化,因此必须使用三维电缆理论。本文给出了几种肌节的电路模型,并绘制了正弦施加电流与电位之间预测相位角的曲线图。这些电路模型由涉及归一化变量的方程描述,因为它们以相对简单的方式影响相位图。本文提出了一种估计电路元件值及其估计标准偏差的方法,并讨论了估计的可靠性。使用一种客观的拟合度量——汉密尔顿R检验,来检验不同拟合数据的显著性。最后得出结论,所提出的电路模型均不能充分描述观察到的相位角随圆周位置的变化。目前尚不清楚分歧的根源是测量不足还是理论不足。

相似文献

1
Circuit models of the passive electrical properties of frog skeletal muscle fibers.
J Gen Physiol. 1974 Apr;63(4):432-59. doi: 10.1085/jgp.63.4.432.
2
Impedance of frog skeletal muscle fibers in various solutions.
J Gen Physiol. 1974 Apr;63(4):460-91. doi: 10.1085/jgp.63.4.460.
4
A study on the electrical resistance of the frog sartorius muscle.
J Gen Physiol. 1966 May;49(5):897-912. doi: 10.1085/jgp.49.5.897.
7
Measurement of the impedance of frog skeletal muscle fibers.
Biophys J. 1974 Apr;14(4):295-315. doi: 10.1016/S0006-3495(74)85917-5.
8
Depolarization of the internal membrane system in the activation of frog skeletal muscle.
J Gen Physiol. 1967 May;50(5):1101-24. doi: 10.1085/jgp.50.5.1101.
9
Longitudinal impedance of skinned frog muscle fibers.
J Gen Physiol. 1974 May;63(5):625-37. doi: 10.1085/jgp.63.5.625.

引用本文的文献

1
Non-invasive assessment of muscle injury in healthy and dystrophic animals with electrical impedance myography.
Muscle Nerve. 2017 Dec;56(6):E85-E94. doi: 10.1002/mus.25559. Epub 2017 Mar 24.
2
The Effect of Subcutaneous Fat on Electrical Impedance Myography: Electrode Configuration and Multi-Frequency Analyses.
PLoS One. 2016 May 26;11(5):e0156154. doi: 10.1371/journal.pone.0156154. eCollection 2016.
3
An analysis of the relationships between subthreshold electrical properties and excitability in skeletal muscle.
J Gen Physiol. 2011 Jul;138(1):73-93. doi: 10.1085/jgp.201010510. Epub 2011 Jun 13.
4
Conduction velocities in amphibian skeletal muscle fibres exposed to hyperosmotic extracellular solutions.
J Muscle Res Cell Motil. 2007;28(4-5):195-202. doi: 10.1007/s10974-007-9115-8. Epub 2007 Sep 22.
5
Numerical analysis of Ca2+ depletion in the transverse tubular system of mammalian muscle.
Biophys J. 2001 May;80(5):2046-55. doi: 10.1016/S0006-3495(01)76178-4.
6
Impedance of a goat eye lens.
Med Biol Eng Comput. 1997 Jul;35(4):348-53. doi: 10.1007/BF02534089.
7
A cleft model for cardiac Purkinje strands.
Biophys J. 1981 Mar;33(3):383-408. doi: 10.1016/S0006-3495(81)84902-8.
8
Transverse impedance of single frog skeletal muscle fibers.
Biophys J. 1982 Oct;40(1):51-9. doi: 10.1016/S0006-3495(82)84457-3.
9
Impedance analysis in epithelia and the problem of gastric acid secretion.
J Membr Biol. 1983;72(1-2):17-41. doi: 10.1007/BF01870312.
10
Ion conductances of the surface and transverse tubular membranes of skeletal muscle.
J Membr Biol. 1983;73(3):217-26. doi: 10.1007/BF01870536.

本文引用的文献

1
LINEAR ELECTRICAL PROPERTIES OF STRIATED MUSCLE FIBRES OBSERVED WITH INTRACELLULAR ELECTRODES.
Proc R Soc Lond B Biol Sci. 1964 Apr 14;160:69-123. doi: 10.1098/rspb.1964.0030.
4
The sarcoplasmic reticulum and transverse tubules of the frog's sartorius.
J Cell Biol. 1965 Jun;25(3):Suppl:209-31. doi: 10.1083/jcb.25.3.209.
5
Ionic conductances of the surface and transverse tubular membranes of frog sartorius fibers.
J Gen Physiol. 1969 Mar;53(3):279-97. doi: 10.1085/jgp.53.3.279.
6
Inward spread of activation in vertebrate muscle fibres.
J Physiol. 1971 Feb;212(3):777-99. doi: 10.1113/jphysiol.1971.sp009356.
8
The structural implications of the linear electrical properties of cardiac Purkinje strands.
J Gen Physiol. 1970 Apr;55(4):524-47. doi: 10.1085/jgp.55.4.524.
9
The spatial variation of membrane potential near a small source of current in a spherical cell.
J Gen Physiol. 1970 Jun;55(6):736-57. doi: 10.1085/jgp.55.6.736.
10
The role of sodium current in the radial spread of contraction in frog muscle fibers.
J Gen Physiol. 1970 Jun;55(6):703-15. doi: 10.1085/jgp.55.6.703.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验