Suppr超能文献

鱿鱼巨大轴突中钠电导的缓慢失活。对链霉蛋白酶的抗性。

Slow inactivation of the sodium conductance in squid giant axons. Pronase resistance.

作者信息

Rudy B

出版信息

J Physiol. 1978 Oct;283:1-21. doi: 10.1113/jphysiol.1978.sp012485.

Abstract
  1. Squid giant axons internally perfused with CsF have their Na conductance inactivated due to the low value of the resting potential. When hyperpolarized with voltage clamp to normal values of resting potential, the Na conductance recovers with an exponential time course. The time constant of recovery is of the order of 30 sec at a membrane potential of -70 mV and at 5 degrees C. The recovery from slow inactivation has a Q10 of about 3. 2. The development of inactivation during depolarization is also slow. The time constant varies between 10 and 20 sec at 5 degrees C, depending upon the value of the membrane potential. 3. Slow inactivation is also observed in NaF perfused axons and in intact axons with a low resting potential. 4. Although internal perfusion with pronase (or a purified fraction of this enzymic complex) blocks the fast (h) inactivation of the Na conductance, the slow inactivation remains. The recovery is similar before and after the proteolytic treatment. However, slow inactivation appears to develop faster after enzymic perfusion. 5. Slow inactivation develops without any apparent change in distributed or local membrane surface charge. 6. The experiments suggest that slow inactivation is a general property of the Na conductance as in many other conductance channels in excitable membranes. The experiments can be interpreted by proposing that slow inactivation is a phenomenon independent of fast inactivation, and that pronase somehow accelerates the onset of slow inactivation. 7. An alternative model, in which slow inactivation is coupled to fast inactivation, is proposed. This model is consistent with the results presented here and is very similar to one proposed to explain the frequency response of the sodium currents in Myxicola giant axons (Rudy, 1975, 1978).
摘要
  1. 用氟化铯进行内部灌注的鱿鱼巨大轴突,由于静息电位值较低,其钠电导失活。当通过电压钳将其超极化到正常静息电位值时,钠电导以指数时间进程恢复。在膜电位为 -70 mV 且温度为 5℃时,恢复的时间常数约为 30 秒。从缓慢失活状态恢复的过程中,Q10 约为 3。2. 去极化过程中失活的发展也很缓慢。在 5℃时,时间常数在 10 到 20 秒之间变化,这取决于膜电位的值。3. 在灌注氟化钠的轴突以及静息电位较低的完整轴突中也观察到了缓慢失活现象。4. 尽管用链霉蛋白酶(或这种酶复合物的纯化组分)进行内部灌注会阻断钠电导的快速(h)失活,但缓慢失活仍然存在。蛋白水解处理前后的恢复情况相似。然而,酶灌注后缓慢失活似乎发展得更快。5. 缓慢失活的发展过程中,膜表面电荷分布或局部电荷没有明显变化。6. 这些实验表明,缓慢失活是钠电导的一个普遍特性,就像可兴奋膜中的许多其他电导通道一样。这些实验结果可以解释为,缓慢失活是一种独立于快速失活的现象,并且链霉蛋白酶以某种方式加速了缓慢失活的起始。7. 提出了另一种模型,其中缓慢失活与快速失活相关联。该模型与这里给出的结果一致,并且与为解释黏液虫巨大轴突中钠电流的频率响应而提出的模型非常相似(鲁迪,1975 年,1978 年)。

相似文献

引用本文的文献

7
Sodium Channels and Local Anesthetics-Old Friends With New Perspectives.钠通道与局部麻醉药——拥有新视角的老朋友
Front Pharmacol. 2022 Mar 28;13:837088. doi: 10.3389/fphar.2022.837088. eCollection 2022.

本文引用的文献

9
Membrane calcium current in ventricular myocardial fibres.心室肌纤维中的膜钙电流。
J Physiol. 1970 Mar;207(1):191-209. doi: 10.1113/jphysiol.1970.sp009056.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验