Suppr超能文献

从生物物理角度看跨时间尺度的神经元兴奋性的恢复力。

A biophysical perspective on the resilience of neuronal excitability across timescales.

机构信息

Faculty of Medicine, Technion - Institute of Technology, Haifa, Israel.

Biology Department, Brandeis University, Waltham, MA, USA.

出版信息

Nat Rev Neurosci. 2023 Oct;24(10):640-652. doi: 10.1038/s41583-023-00730-9. Epub 2023 Aug 24.

Abstract

Neuronal membrane excitability must be resilient to perturbations that can take place over timescales from milliseconds to months (or even years in long-lived animals). A great deal of attention has been paid to classes of homeostatic mechanisms that contribute to long-term maintenance of neuronal excitability through processes that alter a key structural parameter: the number of ion channel proteins present at the neuronal membrane. However, less attention has been paid to the self-regulating 'automatic' mechanisms that contribute to neuronal resilience by virtue of the kinetic properties of ion channels themselves. Here, we propose that these two sets of mechanisms are complementary instantiations of feedback control, together enabling resilience on a wide range of temporal scales. We further point to several methodological and conceptual challenges entailed in studying these processes - both of which involve enmeshed feedback control loops - and consider the consequences of these mechanisms of resilience.

摘要

神经元膜的兴奋性必须能够抵御各种干扰,这些干扰可能会在从毫秒到数月(甚至在长寿动物中是数年)的时间尺度上发生。人们已经关注了许多稳态机制的类别,这些机制通过改变关键结构参数来促进神经元兴奋性的长期维持:神经元膜上存在的离子通道蛋白的数量。然而,人们对自身调节的“自动”机制的关注较少,这些机制通过离子通道本身的动力学特性来促进神经元的弹性。在这里,我们提出这两组机制是反馈控制的互补实例,共同使神经元在广泛的时间尺度上具有弹性。我们还指出了研究这些过程所涉及的几个方法学和概念上的挑战——这两个过程都涉及交织的反馈控制回路,并考虑了这些弹性机制的后果。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验