Suppr超能文献

猫纹状皮层简单细胞感受野中的空间总和

Spatial summation in the receptive fields of simple cells in the cat's striate cortex.

作者信息

Movshon J A, Thompson I D, Tolhurst D J

出版信息

J Physiol. 1978 Oct;283:53-77. doi: 10.1113/jphysiol.1978.sp012488.

Abstract
  1. We have examined the responses of simple cells in the cat's atriate cortex to visual patterns that were designed to reveal the extent to which these cells may be considered to sum light-evoked influences linearly across their receptive fields. We used one-dimensional luminance-modulated bars and grating as stimuli; their orientation was always the same as the preferred orientation of the neurone under study. The stimuli were presented on an oscilloscope screen by a digital computer, which also accumulated neuronal responses and controlled a randomized sequence of stimulus presentations. 2. The majority of simple cells respond to sinusoidal gratings that are moving or whose contrast is modulated in time in a manner consistent with the hypothesis that they have linear spatial summation. Their responses to moving gratings of all spatial frequencies are modulated in synchrony with the passage of the gratings' bars across their receptive fields, and they do not produce unmodulated responses even at the highest spatial frequencies. Many of these cells respond to temporally modulated stationary gratings simply by changing their response amplitude sinusoidally as the spatial phase of the grating the grating is varied. Nonetheless, their behavior appears to indicate linear spatial summation, since we show in an Appendix that the absence of a 'null' phase in a visual neurone need not indicate non-linear spatial summation, and further that a linear neurone lacking a 'null' phase should give responses of the form that we have observed in this type of simple cell. 3. A minority of simple cells appears to have significant non-linearities of spatial summation. These neurones respond to moving gratings of high spatial frequency with a partially or totally unmodulated elevation of firing rate. They have no 'null' phases when tested with stationary gratings, and reveal their non-linearity by giving responses to gratings of some spatial phases that are composed partly or wholly of even harmonics of the stimulus frequency ('on-off' responses). 4. We compared simple receptive fields with their sensitivity to sinusoidal gratings of different spatial frequencies. Qualitatively, the most sensitive subregions of simple cells' receptive fields are roughly the same width as the individual bars of the gratings to which they are most sensitive. Quantitatively, their receptive field profiles measured with thin stationary lines, agree well with predicted profiles derived by Fourier synthesis of their spatial frequency tuning curves.
摘要
  1. 我们研究了猫纹状皮层中简单细胞对视觉模式的反应,这些视觉模式旨在揭示这些细胞在其感受野上对光诱发影响进行线性总和的程度。我们使用一维亮度调制条和光栅作为刺激;它们的方向始终与所研究神经元的偏好方向相同。刺激由数字计算机在示波器屏幕上呈现,该计算机还累积神经元反应并控制刺激呈现的随机序列。2. 大多数简单细胞对移动的正弦光栅或以与它们具有线性空间总和的假设一致的方式随时间调制对比度的光栅做出反应。它们对所有空间频率的移动光栅的反应与光栅条穿过其感受野的过程同步调制,并且即使在最高空间频率下也不会产生未调制的反应。这些细胞中的许多细胞对时间调制的静止光栅的反应仅仅是随着光栅空间相位的变化以正弦方式改变其反应幅度。然而,它们的行为似乎表明存在线性空间总和,因为我们在附录中表明,视觉神经元中不存在“零”相位并不一定表明存在非线性空间总和,而且进一步表明缺乏“零”相位的线性神经元应该给出我们在这种类型的简单细胞中观察到的反应形式。3. 少数简单细胞似乎具有显著的空间总和非线性。这些神经元对高空间频率的移动光栅的反应是放电率部分或完全未调制的升高。在用静止光栅测试时,它们没有“零”相位,并且通过对某些空间相位的光栅做出部分或完全由刺激频率的偶次谐波组成的反应(“开 - 关”反应)来揭示其非线性。4. 我们比较了简单感受野对不同空间频率正弦光栅的敏感性。定性地说,简单细胞感受野中最敏感的子区域的宽度与它们最敏感的光栅的单个条带大致相同。定量地说,用细的静止线测量的它们的感受野轮廓与通过对其空间频率调谐曲线进行傅里叶合成得出的预测轮廓非常吻合。

相似文献

1
Spatial summation in the receptive fields of simple cells in the cat's striate cortex.
J Physiol. 1978 Oct;283:53-77. doi: 10.1113/jphysiol.1978.sp012488.
2
Receptive field organization of complex cells in the cat's striate cortex.
J Physiol. 1978 Oct;283:79-99. doi: 10.1113/jphysiol.1978.sp012489.
4
Spatial properties of cells in the rabbit's striate cortex.
J Physiol. 1983 Jul;340:535-53. doi: 10.1113/jphysiol.1983.sp014779.
5
Spatial summation by simple cells in the striate cortex of the cat.
Exp Brain Res. 1987;66(3):607-20. doi: 10.1007/BF00270694.
8
Spatial and temporal contrast sensitivity of neurones in areas 17 and 18 of the cat's visual cortex.
J Physiol. 1978 Oct;283:101-20. doi: 10.1113/jphysiol.1978.sp012490.
9
Linear analysis of the responses of simple cells in the cat visual cortex.
Exp Brain Res. 1981;44(4):386-400. doi: 10.1007/BF00238831.

引用本文的文献

1
Mapping the visual cortex with Zebra noise and wavelets.
bioRxiv. 2025 Jul 23:2025.07.19.665666. doi: 10.1101/2025.07.19.665666.
2
Convolutional architectures are cortex-aligned de novo.
bioRxiv. 2025 Jul 29:2024.05.10.593623. doi: 10.1101/2024.05.10.593623.
3
Ocular drift shakes the stationary view on pattern vision.
J Vis. 2025 Jul 1;25(8):17. doi: 10.1167/jov.25.8.17.
5
Unpacking the V1 map: Differential covariation of visual properties across spatial dimensions.
bioRxiv. 2025 May 14:2025.03.19.644195. doi: 10.1101/2025.03.19.644195.
7
A novel interface for cortical columnar neuromodulation with multipoint infrared neural stimulation.
Nat Commun. 2024 Aug 2;15(1):6528. doi: 10.1038/s41467-024-50375-0.
8
Differential cortical and subcortical visual processing with eyes shut.
J Neurophysiol. 2024 Jul 1;132(1):54-60. doi: 10.1152/jn.00073.2024. Epub 2024 May 29.
9
Primate V2 Receptive Fields Derived from Anatomically Identified Large-Scale V1 Inputs.
Res Sq. 2024 May 17:rs.3.rs-4139501. doi: 10.21203/rs.3.rs-4139501/v1.
10
Brightness illusions drive a neuronal response in the primary visual cortex under top-down modulation.
Nat Commun. 2024 Apr 23;15(1):3141. doi: 10.1038/s41467-024-46885-6.

本文引用的文献

1
The contrast sensitivity of retinal ganglion cells of the cat.
J Physiol. 1966 Dec;187(3):517-52. doi: 10.1113/jphysiol.1966.sp008107.
2
Receptive fields, binocular interaction and functional architecture in the cat's visual cortex.
J Physiol. 1962 Jan;160(1):106-54. doi: 10.1113/jphysiol.1962.sp006837.
3
An approach to the quantitative analysis of electrophysiological data from single neurons.
Biophys J. 1960 Sep;1(1):15-28. doi: 10.1016/s0006-3495(60)86872-5.
4
Optical and photoelectric analog of the eye.
J Opt Soc Am. 1956 Sep;46(9):721-39. doi: 10.1364/josa.46.000721.
5
The neural mechanism of binocular depth discrimination.
J Physiol. 1967 Nov;193(2):327-42. doi: 10.1113/jphysiol.1967.sp008360.
6
The spatial selectivity of the visual cells of the cat.
J Physiol. 1969 Jul;203(1):223-35. doi: 10.1113/jphysiol.1969.sp008861.
7
Responses to moving slits by single units in cat striate cortex.
Exp Brain Res. 1968;6(4):373-90. doi: 10.1007/BF00233185.
8
Interaction effects of visual contours on the discharge frequency of simple striate neurones.
J Physiol. 1971 Dec;219(3):659-87. doi: 10.1113/jphysiol.1971.sp009682.
9
Lateral inhibition between orientation detectors in the cat's visual cortex.
Exp Brain Res. 1972;15(4):439-40. doi: 10.1007/BF00234129.
10
An analysis of orientation selectivity in the cat's visual cortex.
Exp Brain Res. 1974 Apr 30;20(1):1-17. doi: 10.1007/BF00239014.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验