Suppr超能文献

软体动物神经元中的钾离子电导和内部钙积累

Potassium conductance and internal calcium accumulation in a molluscan neurone.

作者信息

Gorman A L, Thomas M V

出版信息

J Physiol. 1980 Nov;308:287-313. doi: 10.1113/jphysiol.1980.sp013472.

Abstract
  1. The Aplysia neurone R-15 was injected with the Ca(2+) sensitive dye arsenazo III. Changes in dye absorbance were measured with a differential spectrophotometer to monitor changes in the free internal Ca(2+) concentration, Ca, during membrane depolarization and during intracellular Ca(2+) ion injection under voltage clamp conditions.2. The absorbance change, and thus Ca, increases linearly with Ca(2+) injection intensity at constant duration. The absorbance change produced by a constant intensity Ca(2+) injection also increases with injection duration, but this increase is asymptotic.3. The Ca(2+) activated K(+) current, I(K, Ca), increases linearly with the increase in Ca and its rise and decay follows closely the time course of the absorbance change produced by internal Ca(2+) injection.4. The Ca(2+) activated K(+) conductance increases exponentially with membrane depolarization. The increase in K(+) conductance activated by a constant intensity and duration Ca(2+) injection is on average e-fold for a 25.3 mV change in membrane potential.5. The difference in net outward K(+) current measured during depolarizing pulses to different membrane potentials in normal and in Ca(2+) free ASW was used as an index of I(K, Ca). Its time course was approximately linear for the first 50-100 msec of depolarization, but for longer times the relation approached a maximum. Simultaneous measurements of the arsenazo III absorbance changes were broadly consistent with the activation of I(K, Ca) being brought about by the rise in Ca during a pulse.6. The relation between Ca(2+) activated K(+) conductance and membrane potential is bell shaped and resembles the absorbance vs. potential curve, but its maximum is displaced to more positive membrane potentials. The shift in the two curves on the voltage axis can be explained by the potential dependence of G(K, Ca).7. The net outward K(+) current measured with depolarizing voltage pulses in normal and in Ca(2+) free ASW is increased when Ca is elevated by internal Ca(2+) injection. With large and prolonged Ca(2+) injections the net outward current is depressed following the decline of Ca.8. The time and frequency dependent depression of the net outward K(+) current which occurs during repetitive stimulation is shown to have no obvious temporal relation to the increase in Ca. The depression is relieved by an increase in Ca caused by internal Ca(2+) injection.9. The net outward K(+) current measured with brief depolarizing pulses which approach the estimated Ca(2+) equilibrium potential and therefore do not cause Ca(2+) influx and accumulation is facilitated by a previous depolarizing pulse which causes a rise in Ca..10. The facilitation experiments also suggest that the activation of I(K, Ca) by Ca has a significant time constant. During a depolarizing pulse, the rise in Ca next to the membrane, and hence I(K, Ca) is expected to follow the square root of time, but a delay in the activation of I(K, Ca) by Ca could explain why the observed time course of I(K, Ca) is initially almost linear.11. The potential dependence of the Ca(2+) activated K(+) conductance can be explained if the internal Ca(2+) binding site is about half way through the membrane.
摘要
  1. 向海兔神经元R - 15注射钙敏染料偶氮胂III。在电压钳制条件下,利用差分分光光度计测量染料吸光度的变化,以监测膜去极化期间以及细胞内注射钙离子期间细胞内游离钙离子浓度[Ca](i)的变化。

  2. 在恒定持续时间下,吸光度变化以及因此的[Ca](i)随钙离子注射强度呈线性增加。恒定强度钙离子注射产生的吸光度变化也随注射持续时间增加,但这种增加是渐近的。

  3. 钙激活钾电流I(K,Ca)随[Ca](i)的增加呈线性增加,其上升和衰减紧密跟随细胞内注射钙离子产生的吸光度变化的时间进程。

  4. 钙激活钾电导随膜去极化呈指数增加。对于膜电位25.3 mV的变化,恒定强度和持续时间的钙离子注射激活的钾电导平均增加e倍。

  5. 在正常人工海水和无钙人工海水中,向不同膜电位去极化脉冲期间测量的净外向钾电流的差异用作I(K,Ca)的指标。在去极化的最初50 - 100毫秒内,其时间进程近似线性,但在更长时间时,该关系接近最大值。同时测量的偶氮胂III吸光度变化与脉冲期间[Ca](i)升高引起I(K,Ca)的激活大致一致。

  6. 钙激活钾电导与膜电位的关系呈钟形,类似于吸光度与电位曲线,但其最大值向更正的膜电位偏移。两条曲线在电压轴上的偏移可以通过G(K,Ca)的电位依赖性来解释。

  7. 当通过细胞内注射钙离子使[Ca](i)升高时,在正常人工海水和无钙人工海水中用去极化电压脉冲测量的净外向钾电流增加。随着大量且长时间的钙离子注射,净外向电流随[Ca](i)下降而降低。

  8. 重复刺激期间发生的净外向钾电流的时间和频率依赖性降低与[Ca](i)的增加没有明显的时间关系。细胞内注射钙离子引起的[Ca](i)增加可缓解这种降低。

  9. 接近估计的钙离子平衡电位从而不会引起钙离子内流和积累的短暂去极化脉冲测量的净外向钾电流,会被先前引起[Ca](i)升高的去极化脉冲所促进。

  10. 促进实验还表明,[Ca](i)对I(K,Ca)的激活具有显著的时间常数。在去极化脉冲期间,膜附近[Ca](i)的升高以及因此I(K,Ca)预计遵循时间的平方根,但[Ca](i)对I(K,Ca)激活的延迟可以解释为什么观察到的I(K,Ca)的时间进程最初几乎是线性的。

  11. 如果细胞内钙离子结合位点大约在膜的一半位置,则可以解释钙激活钾电导的电位依赖性。

相似文献

1
Potassium conductance and internal calcium accumulation in a molluscan neurone.
J Physiol. 1980 Nov;308:287-313. doi: 10.1113/jphysiol.1980.sp013472.
2
Aequorin response facilitation and intracellular calcium accumulation in molluscan neurones.
J Physiol. 1980 Mar;300:167-96. doi: 10.1113/jphysiol.1980.sp013157.
3
Intracellular calcium accumulation during depolarization in a molluscan neurone.
J Physiol. 1980 Nov;308:259-85. doi: 10.1113/jphysiol.1980.sp013471.
8
Divalent ion currents and the delayed potassium conductance in an Aplysia neurone.
J Physiol. 1980 Jul;304:297-313. doi: 10.1113/jphysiol.1980.sp013325.

引用本文的文献

1
Temperature-dependent bursting pattern analysis by modified Plant model.
Mol Brain. 2014 Jul 22;7:50. doi: 10.1186/s13041-014-0050-5.
3
TRPV1 channels are functionally coupled with BK(mSlo1) channels in rat dorsal root ganglion (DRG) neurons.
PLoS One. 2013 Oct 16;8(10):e78203. doi: 10.1371/journal.pone.0078203. eCollection 2013.
4
The BK channel: a vital link between cellular calcium and electrical signaling.
Protein Cell. 2012 Dec;3(12):883-92. doi: 10.1007/s13238-012-2076-8. Epub 2012 Sep 21.
5
Vascular large conductance calcium-activated potassium channels: functional role and therapeutic potential.
Naunyn Schmiedebergs Arch Pharmacol. 2007 Nov;376(3):145-55. doi: 10.1007/s00210-007-0193-3. Epub 2007 Oct 12.
6
Allosteric voltage gating of potassium channels I. Mslo ionic currents in the absence of Ca(2+).
J Gen Physiol. 1999 Aug;114(2):277-304. doi: 10.1085/jgp.114.2.277.
8
Calcium current inactivation in identified neurones of Helix aspersa.
J Physiol. 1981 Dec;321:273-85. doi: 10.1113/jphysiol.1981.sp013983.
9
Time dependence of the calcium-activated potassium current.
Biophys J. 1981 Oct;36(1):297-302. doi: 10.1016/S0006-3495(81)84729-7.
10
Intracellular calcium accumulation during depolarization in a molluscan neurone.
J Physiol. 1980 Nov;308:259-85. doi: 10.1113/jphysiol.1980.sp013471.

本文引用的文献

1
The components of membrane conductance in the giant axon of Loligo.
J Physiol. 1952 Apr;116(4):473-96. doi: 10.1113/jphysiol.1952.sp004718.
2
A QUANTITATIVE DESCRIPTION OF POTASSIUM CURRENTS IN MYELINATED NERVE FIBRES OF XENOPUS LAEVIS.
J Physiol. 1963 Nov;169(2):424-30. doi: 10.1113/jphysiol.1963.sp007268.
3
Intracellular calcium accumulation during depolarization in a molluscan neurone.
J Physiol. 1980 Nov;308:259-85. doi: 10.1113/jphysiol.1980.sp013471.
4
Slow changes of potassium permeability in the squid giant axon.
Biophys J. 1966 Sep;6(5):553-66. doi: 10.1016/S0006-3495(66)86677-8.
5
Voltage clamp studies of a transient outward membrane current in gastropod neural somata.
J Physiol. 1971 Feb;213(1):21-30. doi: 10.1113/jphysiol.1971.sp009365.
6
Two fast transient current components during voltage clamp on snail neurons.
J Gen Physiol. 1971 Jul;58(1):36-53. doi: 10.1085/jgp.58.1.36.
7
Potassium ion accumulation near a pace-making cell of Aplysia.
J Physiol. 1972 Jul;224(2):421-40. doi: 10.1113/jphysiol.1972.sp009903.
9
The sensitivity of Helix aspersa neurones to injected calcium ions.
J Physiol. 1974 Mar;237(2):259-77. doi: 10.1113/jphysiol.1974.sp010481.
10
Light response of a giant Aplysia neuron.
J Gen Physiol. 1973 Sep;62(3):239-54. doi: 10.1085/jgp.62.3.239.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验