Suppr超能文献

视觉中与波长相关的顺反异构化。

Wavelength dependent cis-trans isomerization in vision.

作者信息

Kim J E, Tauber M J, Mathies R A

机构信息

Department of Chemistry, University of California, Berkeley, California 94720, USA.

出版信息

Biochemistry. 2001 Nov 20;40(46):13774-8. doi: 10.1021/bi0116137.

Abstract

The primary event in vision is the light-driven cis-trans isomerization of the 11-cis-retinal chromophore in the G-protein coupled receptor rhodopsin. Early measurements showed that this photoisomerization has a reaction quantum yield phi of approximately 0.67 [Dartnall (1936) Proc. R. Soc. A 156, 158-170; Dartnall (1968) Vision Res. 8, 339-358] and suggested that the quantum yield was wavelength independent [Schneider (1939) Proc. Natl. Acad. Sci. U.S.A. 170, 102-112]. Here we more accurately determine phi(500) = 0.65 +/- 0.01 and reveal that phi surprisingly depends on the wavelength of the incident light. Although there is no difference in the quantum yield between 450 and 480 nm, the quantum yield falls significantly as the photon energy is reduced below 20 000 cm(-1) (500 nm). At the reddest wavelength measured (570 nm), the quantum yield is reduced by 5 +/- 1% relative to the 500 nm value. These experiments correct the long-held presumption that the quantum yield in vision is wavelength independent, and support the hypothesis that the 200 fs photoisomerization reaction that initiates vision is dictated by nonstationary excited-state vibrational wave packet dynamics.

摘要

视觉中的主要事件是G蛋白偶联受体视紫红质中11-顺式视黄醛发色团的光驱动顺反异构化。早期测量表明,这种光异构化的反应量子产率φ约为0.67 [达特纳尔(1936年)《皇家学会学报》A辑156卷,第158 - 170页;达特纳尔(1968年)《视觉研究》8卷,第339 - 358页],并表明量子产率与波长无关[施耐德(1939年)《美国国家科学院院刊》170卷,第102 - 112页]。在此,我们更精确地测定出φ(500)=0.65±0.01,并揭示出φ令人惊讶地依赖于入射光的波长。尽管在450至480纳米之间量子产率没有差异,但当光子能量降低到20000厘米⁻¹(500纳米)以下时,量子产率会显著下降。在测量的最红波长(570纳米)处,相对于500纳米的值,量子产率降低了5±1%。这些实验纠正了长期以来认为视觉中的量子产率与波长无关的假定,并支持了这样一种假说,即引发视觉的200飞秒光异构化反应是由非稳态激发态振动波包动力学所决定的。

相似文献

4
Photophysiological functions of visual pigments.视觉色素的光生理功能。
Adv Biophys. 1984;17:5-67. doi: 10.1016/0065-227x(84)90024-8.

引用本文的文献

2
Convergent evolution of animal and microbial rhodopsins.动物和微生物视紫红质的趋同进化。
RSC Adv. 2023 Feb 13;13(8):5367-5381. doi: 10.1039/d2ra07073a. eCollection 2023 Feb 6.
6
Specificity of the chromophore-binding site in human cone opsins.人眼视锥细胞视色素结合部位的特异性。
J Biol Chem. 2019 Apr 12;294(15):6082-6093. doi: 10.1074/jbc.RA119.007587. Epub 2019 Feb 15.
7
Coherent control of an opsin in living brain tissue.活脑组织中视蛋白的相干控制。
Nat Phys. 2017 Nov;13(11):1111-1116. doi: 10.1038/NPHYS4257. Epub 2017 Sep 18.
10
Implications of short time scale dynamics on long time processes.短时间尺度动力学对长时间过程的影响。
Struct Dyn. 2017 Dec 22;4(6):061507. doi: 10.1063/1.4996448. eCollection 2017 Nov.

本文引用的文献

1
ENERGY, QUANTA, AND VISION.能量、量子和视觉。
J Gen Physiol. 1942 Jul 20;25(6):819-40. doi: 10.1085/jgp.25.6.819.
9
Molecular basis of visual excitation.视觉兴奋的分子基础。
Science. 1968 Oct 11;162(3850):230-9. doi: 10.1126/science.162.3850.230.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验