Suppr超能文献

3,4,5-三甲氧基苯乙酸和3-酮戊二酸的细菌降解作用

Bacterial degradation of 3,4,5-trimethoxyphenylacetic and 3-ketoglutaric acids.

作者信息

Donnelly M I, Chapman P J, Dagley S

出版信息

J Bacteriol. 1981 Aug;147(2):477-81. doi: 10.1128/jb.147.2.477-481.1981.

Abstract

When grown at the expense of 3,4,5-trimethoxyphenylacetic acid, a species of Arthrobacter readily oxidized 3,4-dihydroxy-5-methoxyphenylacetic acid, but other structurally related aromatic acids were oxidized only slowly. Cell extracts contained a dioxygenase for 3,4-dihydroxy-5-methoxyphenylacetate, and the corresponding trihydroxy acid, which was not attacked by the enzyme, inhibited oxidation of this ring-fission substrate. Cell suspensions did not release carbon dioxide from 3,4-[methoxyl-14C]dihydroxy-5-methoxyphenylacetate but accumulated 1 mol of methanol per mol of 3,4,5-trimethoxyphenylacetate oxidized. A cell extract converted the ring-fission substrate into stoichiometric amounts of pyruvate and acetoacetate, formed from 3-ketoglutarate by the action of an induced decarboxylase. 3-Ketoglutaric acid served as sole source of carbon for many soil isolates.

摘要

以3,4,5-三甲氧基苯乙酸为代价生长时,一种节杆菌很容易氧化3,4-二羟基-5-甲氧基苯乙酸,但其他结构相关的芳香酸氧化速度很慢。细胞提取物含有一种3,4-二羟基-5-甲氧基苯乙酸双加氧酶,相应的三羟基酸不受该酶攻击,可抑制这种开环底物的氧化。细胞悬浮液不会从3,4-[甲氧基-14C]二羟基-5-甲氧基苯乙酸中释放二氧化碳,但每氧化1摩尔3,4,5-三甲氧基苯乙酸会积累1摩尔甲醇。细胞提取物将开环底物转化为化学计量的丙酮酸和乙酰乙酸,它们由3-酮戊二酸通过诱导脱羧酶的作用形成。3-酮戊二酸是许多土壤分离物的唯一碳源。

相似文献

1
Bacterial degradation of 3,4,5-trimethoxyphenylacetic and 3-ketoglutaric acids.
J Bacteriol. 1981 Aug;147(2):477-81. doi: 10.1128/jb.147.2.477-481.1981.
2
Bacterial degradation of 3,4,5-trimethoxycinnamic acid with production of methanol.
J Bacteriol. 1981 Aug;147(2):471-6. doi: 10.1128/jb.147.2.471-476.1981.
4
Enzymatic release of halogens or methanol from some substituted protocatechuic acids.
J Bacteriol. 1985 May;162(2):693-7. doi: 10.1128/jb.162.2.693-697.1985.
5
Biosynthesis of bacterial menaquinones (vitamins K 2 ).
Biochemistry. 1971 Aug 3;10(16):3069-78. doi: 10.1021/bi00792a014.
6
Ring hydroxylation of p-chlorophenylacetate by an arthrobacter strain.
Appl Environ Microbiol. 1976 Jul;32(1):195-6. doi: 10.1128/aem.32.1.195-196.1976.
7
8
Bacterial metabolism of mevalonic acid.
J Bacteriol. 1967 Jan;93(1):207-14. doi: 10.1128/jb.93.1.207-214.1967.
10
Non-enzymic conversion of pyruvate in aqueous solution to 2,4-dihydroxy-2-methylglutaric acid.
FEBS Lett. 1978 Feb 1;86(1):42-4. doi: 10.1016/0014-5793(78)80094-5.

引用本文的文献

1
Bacterial degradation of 3,4,5-trimethoxycinnamic acid with production of methanol.
J Bacteriol. 1981 Aug;147(2):471-6. doi: 10.1128/jb.147.2.471-476.1981.
2
Oxidative side-chain and ring fission of pregnanes by Arthrobacter simplex.
Biochem J. 1988 Nov 1;255(3):769-74. doi: 10.1042/bj2550769.

本文引用的文献

1
OXIDATION OF PHENYLACETIC ACID BY A PSEUDOMONAS.
Biochim Biophys Acta. 1965 May 18;99:383-5. doi: 10.1016/s0926-6593(65)80140-0.
2
THE MICROBIAL METABOLISM OF CINNAMIC ACID.
Can J Microbiol. 1964 Apr;10:175-85. doi: 10.1139/m64-025.
3
Bacterial degradation of 3,4,5-trimethoxycinnamic acid with production of methanol.
J Bacteriol. 1981 Aug;147(2):471-6. doi: 10.1128/jb.147.2.471-476.1981.
5
Bacterial degradation of 4-hydroxyphenylacetic acid and homoprotocatechuic acid.
J Bacteriol. 1974 Oct;120(1):159-67. doi: 10.1128/jb.120.1.159-167.1974.
7
Metabolic function and properties of 4-hydroxyphenylacetic acid 1-hydroxylase from Pseudomonas acidovorans.
J Bacteriol. 1975 Jan;121(1):272-85. doi: 10.1128/jb.121.1.272-285.1975.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验