Suppr超能文献

细菌甲硫氨酸γ-裂合酶与烯属氨基酸反应的机理研究

Mechanistic studies on reactions of bacterial methionine gamma-lyase with olefinic amino acids.

作者信息

Johnston M, Raines R, Chang M, Esaki N, Soda K, Walsh C

出版信息

Biochemistry. 1981 Jul 21;20(15):4325-33. doi: 10.1021/bi00518a014.

Abstract

Methionine gamma-lyase (EC 4.4.1.11), which catalyzes the formation of methanethiol, alpha-ketobutyrate, and ammonia from L-methionine (eq 1), promotes the oxidative deamination of several four- and five-carbon olefinic amino acids (1-5). With the exception of vinylglycine (1), the Vmax rates of keto acid formation from the unsaturated substrate analogues are substantially lower than that for processing of methionine to alpha-ketobutyrate; vinylglycine is deaminated to ketobutyrate and ammonia with a Vmax twice that for L-methionine turnover. L-Allylglycine, L-2-amino-3-trans-pentenoate, and L-2-amino-3-cis-pentenoate (2, 4, 5) are all converted to 2-keto-pentanoic acid (alpha-ketovalerate). L-2-Amino-3-cis-pentenoate (5) is also a time-dependent, irreversible inactivator of the enzyme. None of the other substrate analogues tested appears to inactivate the enzyme. Spectral analysis of the enzymatic reaction with cis isomer 5 reveals the formation of a high-wavelength chromophore (lambda max = 550 nm ) which implies that a beta, gamma-unsaturated pyridoxal p-quinoid (VI) accumulates. No such absorbing species appears to form during the reaction of trans isomer 4 with methionine gamma-lyase. But a 550-nm chromophore develops when both 4 and 5 are reacted with Al(NO3)3 and pyridoxal methochloride in methanolic KOH. It would appear that the geometry of the protein and the olefinic amino acid as an intermediate enzyme-substrate adduct controls the kinetics of reaction, such that azaallylic isomerization becomes selectively rate determining for reaction with 5. When this isomerization is slow, an accumulating Michael-type acceptor (VI) could lead to the observed irreversible inactivation of the enzyme.

摘要

甲硫氨酸γ-裂合酶(EC 4.4.1.11)催化L-甲硫氨酸生成甲硫醇、α-酮丁酸和氨(反应式1),它还能促进几种四碳和五碳烯基氨基酸的氧化脱氨反应(1 - 5)。除乙烯基甘氨酸(1)外,由不饱和底物类似物生成酮酸的Vmax速率显著低于甲硫氨酸转化为α-酮丁酸的速率;乙烯基甘氨酸脱氨生成酮丁酸和氨的Vmax是L-甲硫氨酸周转的两倍。L-烯丙基甘氨酸、L-2-氨基-3-反式-戊烯酸和L-2-氨基-3-顺式-戊烯酸(2、4、5)都能转化为2-酮戊酸(α-酮戊酸)。L-2-氨基-3-顺式-戊烯酸(5)还是该酶的时间依赖性、不可逆失活剂。所测试的其他底物类似物似乎都不会使该酶失活。对与顺式异构体5的酶促反应进行光谱分析,发现形成了一个高波长发色团(λmax = 550 nm),这意味着积累了一种β,γ-不饱和吡哆醛对醌(VI)。在反式异构体4与甲硫氨酸γ-裂合酶的反应过程中似乎没有形成这样的吸收物种。但是当4和5在甲醇氢氧化钾中与硝酸铝和吡哆醛甲氯反应时,会出现一个550-nm的发色团。似乎蛋白质的几何结构以及作为中间酶-底物加合物的烯基氨基酸控制着反应动力学,使得氮杂烯丙基异构化成为与5反应的选择性速率决定因素。当这种异构化缓慢时,积累的迈克尔型受体(VI)可能导致观察到的酶的不可逆失活。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验