Johnston M, Jankowski D, Marcotte P, Tanaka H, Esaki N, Soda K, Walsh C
Biochemistry. 1979 Oct 16;18(21):4690-701. doi: 10.1021/bi00588a033.
L-Propargylglycine, a naturally occurring gamma, delta-acetylenic alpha-amino acid, induces mechanism-based inactivation of two pyridoxal phosphate dependent enzymes of methionine metabolism: (1) cystathionine gamma-synthease, which catalyzes a gamma-replacement reaction in methionine biosynthesis, and (2) methionine gamma-lyase, which catalyzes a gamma-elimination reaction in methionine breakdown. Biphasic pseudo-first-order inactivation kinetics were observed for both enzymes. Complete inactivation is achieved with a minimum molar ratio ([propargylglycine]/[enzyme monomer]) of 4:1 for cystathionine gamma-synthase and of 8:1 for methionine gamma-lyase, consistent with a small number of turnovers per inactivation event. Partitioning ratios were determined directly from observed primary kinetic isotope effects. [alpha-2H]Propargylglycine displays kH/kD values of about 3 on inactivation half-times. [alpha-3H]-Propargylglycine gives release of tritium to solvent nominally stoichiometric with inactivation but, on correction for the calculated tritium isotope discrimination, partition ratios of four and six turnovers per monomer inactivated are indicated for cystathionine gamma-synthase and methionine gamma-lyase, respectively. The inactivation stoichiometry, using [alpha-14C]-propargylglycine, is four labels per tetramer of cystathionine gamma-synthase but usually only two labels per tetramer of methionine gamma-lyase (half-of-the-sites reactivity). Two-dimensional urea isoelectrofocusing/NaDodSO4 electrophoresis suggests (1) that both native enzymes are alpha 2 beta 2 tetramers where the subunits are distinguishable by charge but not by size and (2) that, while each subunit of a cystathionine gamma-synthase tetramer becomes modified by propargylglycine, only one alpha and one beta subunit may be labeled in an inactive alpha 2 beta 2 tetramer of methionine gamma-lyase. Steady-state spectroscopic analyses during inactivation indicated that modified cystathionine gamma-synthase may reprotonate C2 of the enzyme--inactivator adduct, so that the cofactor is still in the pyridoxaldimine oxidation state. Fully inactivated methionine gamma-lyase has lambda max values at 460 and 495 nm, which may represent conjugated pyridoximine paraquinoid that does not reprotonate at C2 of the bound adduct. Either species could arise from Michael-type addition of an enzymic nucleophile to an electrophilic 3,4-allenic paraquinoid intermediate, generated initially by propargylic rearrangement upon a 4,5-acetylenic pyridoximine structure, as originally proposed for propargylglycine inactivation of gamma-cystathionase [Abeles, R., & Walsh, C. (1973) J. Am. Chem. Soc. 95, 6124]. It is reasonable that cystathionine gamma-synthase is the major in vivo target for this natural acetylenic toxin, the growth-inhibitory effects of which are reversed by methionine.
L-炔丙基甘氨酸是一种天然存在的γ,δ-炔丙基α-氨基酸,可诱导基于机制的甲硫氨酸代谢中两种磷酸吡哆醛依赖性酶的失活:(1)胱硫醚γ-合酶,其催化甲硫氨酸生物合成中的γ-取代反应;(2)甲硫氨酸γ-裂解酶,其催化甲硫氨酸分解中的γ-消除反应。两种酶均观察到双相假一级失活动力学。胱硫醚γ-合酶的最小摩尔比([炔丙基甘氨酸]/[酶单体])为4:1,甲硫氨酸γ-裂解酶为8:1时可实现完全失活,这与每个失活事件的周转次数较少一致。分配比直接由观察到的一级动力学同位素效应确定。[α-2H]炔丙基甘氨酸在失活半衰期上的kH/kD值约为3。[α-3H]炔丙基甘氨酸向溶剂中释放的氚与失活名义上化学计量,但经计算的氚同位素歧视校正后,胱硫醚γ-合酶和甲硫氨酸γ-裂解酶每失活单体的周转分配比分别为4次和6次。使用[α-14C]炔丙基甘氨酸时,胱硫醚γ-合酶四聚体的失活化学计量为每个四聚体4个标记,但甲硫氨酸γ-裂解酶四聚体通常每个四聚体只有2个标记(半位点反应性)。二维尿素等电聚焦/十二烷基硫酸钠电泳表明:(1)两种天然酶均为α2β2四聚体,其中亚基可通过电荷区分但不能通过大小区分;(2)虽然胱硫醚γ-合酶四聚体的每个亚基都会被炔丙基甘氨酸修饰,但在甲硫氨酸γ-裂解酶的无活性α2β2四聚体中,可能只有一个α亚基和一个β亚基被标记。失活过程中的稳态光谱分析表明,修饰后的胱硫醚γ-合酶可能使酶-失活剂加合物的C2重新质子化,因此辅因子仍处于磷酸吡哆醛亚胺氧化态。完全失活的甲硫氨酸γ-裂解酶在460和495nm处有最大吸收峰,这可能代表结合加合物C2处未重新质子化的共轭吡哆醛亚胺对醌型。这两种情况都可能源于酶亲核试剂对亲电3,4-丙二烯基对醌型中间体的迈克尔型加成,该中间体最初由4,5-炔丙基吡哆醛亚胺结构上的炔丙基重排产生,这是最初提出的炔丙基甘氨酸使γ-胱硫醚酶失活的机制[阿贝莱斯,R.,&沃尔什,C.(1973年)《美国化学会志》95,6124]。胱硫醚γ-合酶是这种天然炔丙基毒素在体内的主要靶点,这是合理的,其生长抑制作用可被甲硫氨酸逆转。