Johnston M, Marcotte P, Donovan J, Walsh C
Biochemistry. 1979 May 1;18(9):1729-38. doi: 10.1021/bi00576a015.
Cystathionine gamma-synthetase (EC 4.2.99.9), a key enzyme in bacterial methionoine biosynthesis, has been found to use L-vinylglycine (2-amino-3-butenoate) and L-beta-haloaminobutyrates (X = F, Cl) as substrates in addition to the physiological gamma-substituted substrate O-succinyl-L-homoserine (OSHS). Vinylglycine is a substrate both for alpha-ketobutyrate formation (the normal product from gamma elimination with OSHS) and for cystathionine formation (the normal gamma-replacement product with OSHS) in the presence of cysteine. This behavior substantiates that the stabilized vinylglycine--pyridoxal phosphate (PLP) alpha carbanion is the key partitioning species in this enzyme's catalysis. The Vmax values for ketobutyrate production and cystathonine formation from vinylglycine are equivalent at approximately 45 U/mg, whereas the corresponding Vmax values from OSHS are 20 and 200 U/mg, respectively, suggesting different rate-determining steps with these two substrates. The beta-haloaminobutyrates undergo catalyzed HX elimination to yield bound aminocrotonate--PLP directly as a an initial intermediate and as a precursor of ketobutyrate. Little or no cystathionine formation is detectable when these substrates are incubated with enzyme and the normal cosubstrate cysteine, strongly indicating that the aminocrotonate--PLP intermediate is not in rapid, reversible equilibrium with the stabilized vinylglycine--PLP carbanion; in normal catalysis, the prototropic shift from alpha carbanion to aminocrotonate appears functionally unidirectional. The HX-elimination step from beta-chloroaminobutyrate is nonconcerted as demonstrated by a 3H2O in equilibrium chloroaminobutyrate exchange reaction. Further suggestion for discrete beta-halo-alpha-carbanionic intermediates derives from the observation that the haloaminobutyrates appear to a partition between ketobutyrate formation and enzyme inactivation. Since neither vinylglycine nor OSHS causes any detectable inactivation during turnover, it is likely that the inactivation species is not a common intermediate, i.e., the electrophilic aminocrotonate--PLP species (a potential Michael acceptor), but rather a species peculiar to the beta-haloaminobutyrate pathway. The beta-halo-alpha-carbanion--PLP intermediate has beta-halo-alpha-iminodihydropyridine character in the p-quinoid resonance contributor and is a good candidate for an alkylating agent by an SN2--displacement mechanism. Spectroscopic analyses of incubations with the various amino acid substrates show a number of long-wavelength absorbing species forming during turnover, tentative assignments are suggested.
胱硫醚γ-合成酶(EC 4.2.99.9)是细菌甲硫氨酸生物合成中的关键酶,除了生理上的γ-取代底物O-琥珀酰-L-高丝氨酸(OSHS)外,还发现它能利用L-乙烯基甘氨酸(2-氨基-3-丁烯酸酯)和L-β-卤代氨基丁酸酯(X = F、Cl)作为底物。在有半胱氨酸存在的情况下,乙烯基甘氨酸既是生成α-酮丁酸(由OSHS进行γ-消除的正常产物)的底物,也是生成胱硫醚(与OSHS进行正常γ-取代的产物)的底物。这种行为证实了稳定的乙烯基甘氨酸-磷酸吡哆醛(PLP)α-碳负离子是该酶催化过程中的关键分配物种。由乙烯基甘氨酸生成酮丁酸和胱硫醚的Vmax值在约45 U/mg时相当,而由OSHS生成相应产物的Vmax值分别为20和200 U/mg,这表明这两种底物的速率决定步骤不同。β-卤代氨基丁酸酯经过催化的HX消除反应,直接生成结合的氨基巴豆酸酯-PLP作为初始中间体和酮丁酸的前体。当这些底物与酶和正常的共底物半胱氨酸一起孵育时,几乎检测不到胱硫醚的生成,这强烈表明氨基巴豆酸酯-PLP中间体与稳定的乙烯基甘氨酸-PLP碳负离子不是处于快速、可逆的平衡状态;在正常催化过程中,从α-碳负离子到氨基巴豆酸酯的质子转移在功能上似乎是单向的。如平衡氯代氨基丁酸酯交换反应中3H2O所示,β-氯代氨基丁酸酯的HX消除步骤不是协同进行的。对离散的β-卤代-α-碳负离子中间体的进一步推测源于以下观察结果:卤代氨基丁酸酯似乎在生成酮丁酸和使酶失活之间存在分配。由于在周转过程中乙烯基甘氨酸和OSHS都不会引起任何可检测到的失活,所以失活物种很可能不是常见的中间体,即亲电的氨基巴豆酸酯-PLP物种(一种潜在的迈克尔受体),而是β-卤代氨基丁酸酯途径特有的物种。β-卤代-α-碳负离子-PLP中间体在对醌共振贡献者中具有β-卤代-α-亚氨基二氢吡啶特征,并且是通过SN2取代机制成为烷基化剂的良好候选物。对与各种氨基酸底物孵育的光谱分析表明,在周转过程中形成了许多长波长吸收物种,并给出了初步的归属建议。