Suppr超能文献

通过pH值、跨膜pH梯度和电势对线粒体细胞色素系统中电子转移的控制。细胞色素b-c段。

Control of electron transfer in the cytochrome system of mitochondria by pH, transmembrane pH gradient and electrical potential. The cytochromes b-c segment.

作者信息

Papa S, Lorusso M, Izzo G, Capuano F

出版信息

Biochem J. 1981 Feb 15;194(2):395-406. doi: 10.1042/bj1940395.

Abstract
  1. A study is presented of the effects of pH, transmembrane pH gradient and electrical potential on oxidoreductions of b and c cytochromes in ox heart mitochondria and 'inside-out' submitochondrial particles. 2. Kinetic analysis shows that, in mitochondria at neutral pH, there is a restraint on the aerobic oxidation of cytochrome b566 with respect to cytochrome b562. Valinomycin plus K+ accelerates cytochrome b566 oxidation and retards net oxidation of cytochrome b562. At alkaline pH the rate of cytochrome b566 oxidation approaches that of cytochrome b562 and the effects of valinomycin on b cytochromes are impaired. 3. At slightly acidic pH, oxygenation of antimycin-supplemented mitochondria causes rapid reduction of cytochrome b566 and small delayed reduction of cytochrome b562. Valinomycin or a pH increase in the medium promote reduction of cytochrome b562 and decrease net reduction of cytochrome b566. 4. Addition of valinomycin to mitochondria and submitochondrial particles in the respiring steady state causes, at pH values around neutrality, preferential oxidation of cytochrome b566 with respect to cytochrome b562. The differential effect of valinomycin on oxidation of cytochromes b566 and b562 is enhanced by substitution of 1H2O of the medium with 2H2O and tends to disappear as the pH of the medium is raised to alkaline values. 5. Nigericin addition in the aerobic steady state causes, both in mitochondria and submitochondrial particles, preferential oxidation of cytochrome b562 with respect to cytochrome b566. This is accompanied by c cytochrome oxidation in mitochondria but c cytochrome reduction in submitochondrial particles. 6. In mitochondria as well as in submitochondrial particles, the aerobic transmembrane potential (delta psi) does not change by raising the pH of the external medium from neutrality to alkalinity. The transmembrane pH gradient (delta pH) on the other hand, decrease slightly. 7. The results presented provide evidence that the delta psi component of the aerobic delta microH+ (the sum of the proton chemical and electrical activities) exerts a pH-dependent constraint on forward electron flow from cytochrome b566 to cytochrome b562. This effect is explained as a consequence of anisotropic location of cytochromes b566 and b562 in the membrane and the pH-dependence of the redox function of these cytochromes. Transmembrane delta pH, on the other hand, exerts control on electron flow from cytochrome b562 to c cytochromes.
摘要
  1. 本文介绍了pH值、跨膜pH梯度和电势对牛心线粒体及“内翻”亚线粒体颗粒中b和c细胞色素氧化还原作用的影响。2. 动力学分析表明,在中性pH值的线粒体中,细胞色素b566的有氧氧化相对于细胞色素b562受到抑制。缬氨霉素加钾离子可加速细胞色素b566的氧化,并延缓细胞色素b562的净氧化。在碱性pH值下,细胞色素b566的氧化速率接近细胞色素b562的氧化速率,缬氨霉素对b细胞色素的作用减弱。3. 在略酸性pH值下,用抗霉素处理的线粒体进行氧合会导致细胞色素b566迅速还原,细胞色素b562出现小的延迟还原。缬氨霉素或培养基pH值升高会促进细胞色素b562的还原,并减少细胞色素b566的净还原。4. 在呼吸稳定状态下,向线粒体和亚线粒体颗粒中添加缬氨霉素,在接近中性的pH值时,会使细胞色素b566相对于细胞色素b562优先氧化。用2H2O替代培养基中的1H2O会增强缬氨霉素对细胞色素b566和b562氧化的差异效应,并且随着培养基pH值升高到碱性,这种效应趋于消失。5. 在有氧稳定状态下添加尼日利亚菌素,在线粒体和亚线粒体颗粒中都会使细胞色素b562相对于细胞色素b566优先氧化。这伴随着线粒体中c细胞色素的氧化,但在亚线粒体颗粒中c细胞色素的还原。6. 在线粒体和亚线粒体颗粒中,将外部培养基的pH值从中性提高到碱性,有氧跨膜电位(δψ)不会改变。另一方面,跨膜pH梯度(δpH)略有下降。7. 本文给出的结果证明,有氧δμH+(质子化学活性和电活性之和)的δψ成分对从细胞色素b566到细胞色素b562的正向电子流施加了pH依赖性限制。这种效应被解释为细胞色素b566和b562在膜中各向异性定位以及这些细胞色素氧化还原功能的pH依赖性的结果。另一方面,跨膜δpH对从细胞色素b562到c细胞色素的电子流进行控制。

相似文献

2
Kinetics of cytochrome b oxidation in antimycin-treated submitochondrial particles.
Biochemistry. 1982 Dec 7;21(25):6614-8. doi: 10.1021/bi00268a045.
8
Potential induced redox reactions in mitochondrial and bacterial cytochrome b-c1 complexes.
J Biol Chem. 1996 May 24;271(21):12356-63. doi: 10.1074/jbc.271.21.12356.

引用本文的文献

1
Mapping of redox state of mitochondrial cytochromes in live cardiomyocytes using Raman microspectroscopy.
PLoS One. 2012;7(9):e41990. doi: 10.1371/journal.pone.0041990. Epub 2012 Sep 5.
2
Control of respiration by cytochrome c oxidase in intact cells: role of the membrane potential.
J Biol Chem. 2009 Nov 20;284(47):32331-5. doi: 10.1074/jbc.M109.050146. Epub 2009 Sep 23.
4
Steady-state proton translocation in bovine heart mitochondrial bc1 complex reconstituted into liposomes.
J Bioenerg Biomembr. 1997 Feb;29(1):81-7. doi: 10.1023/a:1022467923837.
10
Thyroid hormone effects on the State IV proton motive force in rat liver mitochondria.
Mol Cell Biochem. 1991 Apr 24;103(1):9-13. doi: 10.1007/BF00229588.

本文引用的文献

1
On the mechanism of electron transfer in complex iii of the electron transfer chain.
Proc Natl Acad Sci U S A. 1967 Mar;57(3):798-805. doi: 10.1073/pnas.57.3.798.
2
The effect of pH on the oxidation-reduction potential of cytochrome b in heart-muscle preparations.
Biochim Biophys Acta. 1962 Jul 16;60:650-2. doi: 10.1016/0006-3002(62)90887-9.
3
The respiratory chain and oxidative phosphorylation.
Adv Enzymol Relat Subj Biochem. 1956;17:65-134. doi: 10.1002/9780470122624.ch2.
5
On the redox potentials of ubiquinone and cytochrome b in the respiratory chain.
Eur J Biochem. 1969 Jul;9(4):519-25. doi: 10.1111/j.1432-1033.1969.tb00640.x.
8
Reactions of b-cytochromes with ATP and antimycin A in pigeon heart mitochondria.
Biochim Biophys Acta. 1972 Apr 20;267(1):15-24. doi: 10.1016/0005-2728(72)90134-x.
9
The effect of ATP on the apparent mid-point potentials of cytochrome b and cytochrome c in beef-heart mitochondria.
Biochim Biophys Acta. 1972 Feb 28;256(2):594-9. doi: 10.1016/0005-2728(72)90088-6.
10
Effect of oligomygin on proton translocation in submitochondrial particles.
Biochim Biophys Acta. 1970 Jan 13;197(1):100-3. doi: 10.1016/0005-2728(70)90016-2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验