Suppr超能文献

竞走力学

Mechanics of competition walking.

作者信息

Cavagna G A, Franzetti P

出版信息

J Physiol. 1981 Jun;315:243-51. doi: 10.1113/jphysiol.1981.sp013745.

Abstract
  1. The work done at each step to lift and accelerate the centre of mass of the body has been measured in competition walkers during locomotion from 2 to 20 km/hr. 2. Three distinct phases characterize the mechanics of walking. From 2 to 6 km/hr the vertical displacement during each step, Sv, increases to a maximum (3.5 vs. 6 cm in normal walking) due to an increase in the amplitude of the rotation over the supporting leg. 3. The transfer, R, between potential energy of vertical displacement and kinetic energy of forward motion during this rotation, reaches a maximum at 4-5 km/hr (R = 65%). From 6 to 10 km/hr R decreases more steeply than in normal walking, indicating a smaller utilization of the pendulum-like mechanism characteristic of walking. 4. Above 10 km/hr potential and kinetic energies vary during each step because both are simultaneously taken up and released by the muscles with almost no transfer between them (R = 2-10%). Above 13-14 km/hr an aerial phase (25-60 msec) takes place during the step. 5. Speeds considerably greater than in normal walking are attained thanks to a greater efficiency of doing positive work. This is made possible by a mechanism of locomotion allowing an important storage and recovery of mechanical energy by the muscles.
摘要
  1. 在竞走运动员以2至20公里/小时的速度行走过程中,测量了身体每一步提升和加速质心所做的功。2. 行走力学有三个不同阶段。在2至6公里/小时时,由于支撑腿旋转幅度增加,每一步的垂直位移Sv增加到最大值(正常行走时为3.5厘米对6厘米)。3. 在这种旋转过程中,垂直位移势能与向前运动动能之间的转换R在4至5公里/小时时达到最大值(R = 65%)。在6至10公里/小时时,R的下降比正常行走时更陡峭,表明行走特有的钟摆式机制的利用率较低。4. 在10公里/小时以上,每一步中势能和动能都会发生变化,因为两者几乎同时被肌肉吸收和释放,它们之间几乎没有转换(R = 2 - 10%)。在13 - 14公里/小时以上,每一步会出现一个腾空阶段(25 - 60毫秒)。5. 由于做正功的效率更高,竞走速度比正常行走速度大幅提高。这是通过一种运动机制实现的,该机制允许肌肉对机械能进行重要的储存和恢复。

相似文献

1
Mechanics of competition walking.
J Physiol. 1981 Jun;315:243-51. doi: 10.1113/jphysiol.1981.sp013745.
2
The mechanics of walking in children.
J Physiol. 1983 Oct;343:323-39. doi: 10.1113/jphysiol.1983.sp014895.
3
Mechanical work and efficiency in level walking and running.
J Physiol. 1977 Jun;268(2):467--81. doi: 10.1113/jphysiol.1977.sp011866.
4
The sources of external work in level walking and running.
J Physiol. 1976 Nov;262(3):639-57. doi: 10.1113/jphysiol.1976.sp011613.
5
The up and down bobbing of human walking: a compromise between muscle work and efficiency.
J Physiol. 2007 Jul 15;582(Pt 2):789-99. doi: 10.1113/jphysiol.2007.127969. Epub 2007 Apr 26.
6
The phase shift between potential and kinetic energy in human walking.
J Exp Biol. 2020 Nov 12;223(Pt 21):jeb232645. doi: 10.1242/jeb.232645.
7
Biomechanical and physiological aspects of legged locomotion in humans.
Eur J Appl Physiol. 2003 Jan;88(4-5):297-316. doi: 10.1007/s00421-002-0654-9. Epub 2002 Nov 13.
8
Mechanical work in terrestrial locomotion: two basic mechanisms for minimizing energy expenditure.
Am J Physiol. 1977 Nov;233(5):R243-61. doi: 10.1152/ajpregu.1977.233.5.R243.
10
Mechanical energy patterns in nordic walking: comparisons with conventional walking.
Gait Posture. 2017 Jan;51:234-238. doi: 10.1016/j.gaitpost.2016.10.010. Epub 2016 Nov 3.

引用本文的文献

1
The Role of Upper Body Biomechanics in Elite Racewalkers.
Front Sports Act Living. 2021 Jul 9;3:702743. doi: 10.3389/fspor.2021.702743. eCollection 2021.
2
Can coordination variability identify performance factors and skill level in competitive sport? The case of race walking.
J Sport Health Sci. 2016 Mar;5(1):35-43. doi: 10.1016/j.jshs.2015.11.005. Epub 2016 Jan 13.
3
5
The up and down bobbing of human walking: a compromise between muscle work and efficiency.
J Physiol. 2007 Jul 15;582(Pt 2):789-99. doi: 10.1113/jphysiol.2007.127969. Epub 2007 Apr 26.
6
The mechanics of walking in children.
J Physiol. 1983 Oct;343:323-39. doi: 10.1113/jphysiol.1983.sp014895.
7
Mechanical efficiency of locomotion in females during different kinds of muscle action.
Eur J Appl Physiol Occup Physiol. 1990;61(5-6):446-52. doi: 10.1007/BF00236066.

本文引用的文献

1
The efficiency of bicycle-pedalling, as affected by speed and load.
J Physiol. 1929 Jun 7;67(3):242-55. doi: 10.1113/jphysiol.1929.sp002565.
2
OXYGEN USED IN HORIZONTAL AND GRADE WALKING AND RUNNING ON THE TREADMILL.
J Appl Physiol. 1965 Jan;20:19-22. doi: 10.1152/jappl.1965.20.1.19.
3
Energy-speed relation and optimal speed during level walking.
Int Z Angew Physiol. 1958;17(4):277-83. doi: 10.1007/BF00698754.
4
Mechanics of walking.
J Appl Physiol. 1966 Jan;21(1):271-8. doi: 10.1152/jappl.1966.21.1.271.
5
The relation of oxygen intake and velocity of walking and running, in competition walkers.
J Physiol. 1968 Aug;197(3):717-21. doi: 10.1113/jphysiol.1968.sp008584.
6
Force platforms as ergometers.
J Appl Physiol. 1975 Jul;39(1):174-9. doi: 10.1152/jappl.1975.39.1.174.
7
The sources of external work in level walking and running.
J Physiol. 1976 Nov;262(3):639-57. doi: 10.1113/jphysiol.1976.sp011613.
8
Mechanical work and efficiency in level walking and running.
J Physiol. 1977 Jun;268(2):467--81. doi: 10.1113/jphysiol.1977.sp011866.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验