Suppr超能文献

队列研究中的“阴性”结果——如何识别谬误

"Negative" results in cohort studies--how to recognize fallacies.

作者信息

Hernberg S

出版信息

Scand J Work Environ Health. 1981;7 Suppl 4:121-6.

PMID:7330622
Abstract

Negative studies are important in occupational medicine because knowledge on noneffect levels for harmful exposures is pertinent. A truly negative study must (i) be large, (ii) be sensitive, and (iii) have well-documented exposure data. Small and/or insensitive so-called negative studies are uninformative, and negative results can only be related to the actual or lower exposure levels. Some of the causes for falsely negative results are inappropriate design (eg, cross-sectional instead of longitudinal), crude measuring methods, inappropriate type of examination, wrong categories of exposed workers, inclusion of workers with too short an exposure time and too low an exposure intensity in the exposed series, too short a follow-up for diseases with long latency times (eg, cancer), incomplete follow-up, wrong reference category (eg, the general population), poor precision of measuring methods, and insensitive or wrong statistical methods. Finally, the same data may be interpreted in different ways. Correct interpretation requires both knowledge of the subject and apprehension of the fact that errors in design and measurement often tend to mask existing differences. At the most, a small insensitive study may rule out very strong effects.

摘要

阴性研究在职业医学中很重要,因为了解有害暴露的无效应水平是相关的。一项真正的阴性研究必须(i)规模大,(ii)敏感度高,以及(iii)有记录完善的暴露数据。小型和/或敏感度低的所谓阴性研究没有提供有用信息,而且阴性结果只能与实际暴露水平或更低的暴露水平相关。造成假阴性结果的一些原因包括设计不当(例如,横断面研究而非纵向研究)、测量方法粗糙、检查类型不当、暴露工人类别错误、在暴露组中纳入暴露时间过短和暴露强度过低的工人、对潜伏期长的疾病(如癌症)随访时间过短、随访不完整、参考类别错误(例如,一般人群)、测量方法精度差以及统计方法不敏感或错误。最后,相同的数据可能会有不同的解释。正确的解释既需要对该主题的了解,也需要认识到设计和测量中的错误往往倾向于掩盖现有的差异这一事实。至多,一项小型的不敏感研究可能排除非常强的效应。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验