Wegst W, Lingens F
Hoppe Seylers Z Physiol Chem. 1981 Sep;362(9):1219-27.
Strain N of Chloridazon-degrading bacteria degrades phenylalanine via cis-2,3-dihydro-2,3-dihydroxyphenylalanine,2,3-dihydroxyphenylalanine aspartate and 4-hydroxy-2-oxovalerate [Hoppe-Seyler's Z. Physiol. Chem. 360, 957--969, (1979); Biochem. J. 194, 679--684 (1981)]. cis-2,3-Dihydro-2,3-dihydroxyphenylalanine and 2,3-dihydroxyphenylalanine as well as phenylpyruvate, cis-2,3-dihydro-2,3-dihydroxyphenylpyruvate, 2,3-dihydroxyphenylpyruvate, cis-2,3-dihydro-2,3-dihydroxyphenylacetate, 2,3-dihydroxyphenylacetate and 2,3-dihydroxybenzaldehyde are detectable in the medium of strain E during growth on phenylalanine. Incubation with phenylacetate, 3-phenylpropionate or 4-phenylbutyrate leads to the accumulation of the corresponding cis-2,3-dihydro-2,3-dihydroxyphenyl derivatives. These compounds are transformed with dihydrodiol dehydrogenase to 2,3-dihydroxyphenylacetate, 3-(2,3-dihydroxyphenyl)propionate and 4-(2,3-dihydroxyphenyl)-butyrate, 3-(2,3-dihydroxyphenyl)propionate is attacked by a catechol 2,3-dioxygenase and the meta-cleavage product is again cleaved by a hydrolase yielding succinate. In a similar reaction sequence the degradation of 4-phenylbutyrate leads to the formation of glutarate. From the growth medium of strain E on phenylacetate also small amounts of 2-, 3- and 4-hydroxyphenylacetate were isolated. Resting cells were shown to metabolize 3- and 4-hydroxyphenylacetate via homogentisate and 3,4-dihydroxyphenylacetate. In the culture medium of strain K2AP benzoate could be detected. Pathways for the degradation of phenylalanine and aromatic carboxylic acids in chloridazon degrading bacteria are proposed.