Fredberg J J
J Appl Physiol Respir Environ Exerc Physiol. 1980 Aug;49(2):232-8. doi: 10.1152/jappl.1980.49.2.232.
Bohn et al. (J Appl. Physiol.: Respirat. Environ. Exercise Physiol, 48: 710-716, 1980) reported that paralyzed beagle dogs maintained normal gas exchange for 6 h or more when small tidal volumes at high breathing rates were maintained at the airway opening (15 ml tidal volume at 15 breaths/s). These tidal volumes were 25% of dead space and thereby were too small to permit convective gas exchange with pulmonary air spaces. I have used a semiempirical analysis to show that augmented diffusion in the central airways, akin to Taylor's turbulent dispersion (Proc. R. Soc. Ser. A 223: 446-468, 1954) combined with molecular diffusion in the periphery of the lung, can account for most if not all of the observed gas transport during small tidal volume, high-frequency ventilation. Ventilation efficiency (alveolar ventilation/minute ventilation) is approximately 2-5% and is insensitive to the combination of frequency and tidal volume giving rise to the minute ventilation.
博恩等人(《应用生理学杂志:呼吸、环境与运动生理学》,48: 710 - 716, 1980)报告称,当在气道开口处维持小潮气量和高呼吸频率时(15次呼吸/秒时潮气量为15毫升),瘫痪的比格犬能维持6小时或更长时间的正常气体交换。这些潮气量是死腔的25%,因此太小以至于无法与肺内气腔进行对流气体交换。我通过半经验分析表明,中央气道中增强的扩散,类似于泰勒湍流扩散(《皇家学会学报A辑》223: 446 - 468, 1954),再结合肺周边的分子扩散,即使不能解释所有,也能解释在小潮气量、高频通气期间观察到的大部分气体传输。通气效率(肺泡通气量/分钟通气量)约为2 - 5%,并且对产生分钟通气量的频率和潮气量的组合不敏感。