Campbell R S, Davis K, Johannigman J A, Branson R D
Department of Surgery, University of Cincinnati, Ohio 45267-0558, USA.
Respir Care. 2000 Mar;45(3):306-12.
Passive humidifiers have gained acceptance in the intensive care unit because of their low cost, simple operation, and elimination of condensate from the breathing circuit. However, the additional dead space of these devices may adversely affect respiratory function in certain patients. This study evaluates the effects of passive humidifier dead space on respiratory function.
Two groups of patients were studied. The first group consisted of patients recovering from acute lung injury and breathing spontaneously on pressure support ventilation. The second group consisted of patients who were receiving controlled mechanical ventilation and were chemically paralyzed following operative procedures. All patients used 3 humidification devices in random order for one hour each. The devices were a heated humidifier (HH), a hygroscopic heat and moisture exchanger (HHME) with a dead space of 28 mL, and a heat and moisture exchanger (HME) with a dead space of 90 mL. During each measurement period the following were recorded: tidal volume, minute volume, respiratory frequency, oxygen consumption, carbon dioxide production, ratio of dead space volume to tidal volume (VD/VT), and blood gases. In the second group, intrinsic positive end-expiratory pressure was also measured.
Addition of either of the passive humidifiers was associated with increased VD/VT. In spontaneously breathing patients, VD/VT increased from 59 +/- 13 (HH) to 62 +/- 13 (HHME) to 68 +/- 11% (HME) (p < 0.05). In these patients, constant alveolar ventilation was maintained as a result of increased respiratory frequency, from 22.1 +/- 6.6 breaths/min (HH) to 24.5 +/- 6.9 breaths/min (HHME) to 27.7 +/- 7.4 breaths/min (HME) (p < 0.05), and increased minute volume, from 9.1 +/- 3.5 L/min (HH) to 9.9 +/- 3.6 L/min (HHME) to 11.7 +/- 4.2 L/min (HME) (p < 0.05). There were no changes in blood gases or carbon dioxide production. In the paralyzed patient group, VD/VT increased from 54 +/- 12% (HH) to 56 +/- 10% (HHME) to 59 +/- 11% (HME) (p < 0.05) and arterial partial pressure of carbon dioxide (PaCO2) increased from 43.2 +/- 8.5 mm Hg (HH) to 43.9 +/- 8.7 mm Hg (HHME) to 46.8 +/- 11 mm Hg (HME) (p < 0.05). There were no changes in respiratory frequency, tidal volume, minute volume, carbon dioxide production, or intrinsic positive end-expiratory pressure.
These findings suggest that use of passive humidifiers with increased dead space is associated with increased VD/VT. In spontaneously breathing patients this is associated with an increase in respiratory rate and minute volume to maintain constant alveolar ventilation. In paralyzed patients this is associated with a small but statistically significant increase in PaCO2.
Clinicians should be aware that each type of passive humidifier has inherent dead space characteristics. Passive humidifiers with high dead space may negatively impact the respiratory function of spontaneously breathing patients or carbon dioxide retention in paralyzed patients. When choosing a passive humidifier, the device with the smallest dead space, but which meets the desired moisture output requirements, should be selected.
被动湿化器因其成本低、操作简单且能消除呼吸回路中的冷凝水而在重症监护病房得到认可。然而,这些装置额外的死腔可能会对某些患者的呼吸功能产生不利影响。本研究评估了被动湿化器死腔对呼吸功能的影响。
对两组患者进行了研究。第一组由急性肺损伤恢复后在压力支持通气下自主呼吸的患者组成。第二组由接受控制性机械通气且在手术后使用化学麻痹的患者组成。所有患者随机顺序使用3种湿化装置,每种装置使用1小时。这些装置分别是加热湿化器(HH)、死腔为28 mL的吸湿式热湿交换器(HHME)和死腔为90 mL的热湿交换器(HME)。在每个测量期间记录以下参数:潮气量、分钟通气量、呼吸频率、氧耗量、二氧化碳产生量、死腔量与潮气量之比(VD/VT)以及血气。在第二组中,还测量了内源性呼气末正压。
添加任何一种被动湿化器均与VD/VT增加有关。在自主呼吸的患者中,VD/VT从使用HH时的59±13%增加到使用HHME时的62±13%,再增加到使用HME时的68±11%(p<0.05)。在这些患者中,由于呼吸频率增加,从使用HH时的22.1±6.6次/分钟增加到使用HHME时的24.5±6.9次/分钟,再增加到使用HME时的27.7±7.4次/分钟(p<0.05),以及分钟通气量增加,从使用HH时的9.1±3.5升/分钟增加到使用HHME时的9.9±3.6升/分钟,再增加到使用HME时的11.7±4.2升/分钟(p<0.05),从而维持了恒定的肺泡通气。血气和二氧化碳产生量没有变化。在麻痹患者组中,VD/VT从使用HH时的54±12%增加到使用HHME时的56±10%,再增加到使用HME时的59±11%(p<0.05),动脉血二氧化碳分压(PaCO2)从使用HH时的43.2±8.5毫米汞柱增加到使用HHME时的43.9±8.7毫米汞柱,再增加到使用HME时的46.8±11毫米汞柱(p<0.05)。呼吸频率、潮气量、分钟通气量、二氧化碳产生量或内源性呼气末正压没有变化。
这些发现表明,使用死腔增加的被动湿化器与VD/VT增加有关。在自主呼吸的患者中,这与呼吸频率和分钟通气量增加以维持恒定的肺泡通气有关。在麻痹患者中,这与PaCO2有小幅但具有统计学意义的增加有关。
临床医生应意识到每种类型的被动湿化器都有其固有的死腔特性。死腔大 的被动湿化器可能会对自主呼吸患者的呼吸功能或麻痹患者的二氧化碳潴留产生负面影响。在选择被动湿化器时,应选择死腔最小但能满足所需湿度输出要求的装置。