Suppr超能文献

病例对照研究中的过度调整。

Overadjustment in case-control studies.

作者信息

Day N E, Byar D P, Green S B

出版信息

Am J Epidemiol. 1980 Nov;112(5):696-706. doi: 10.1093/oxfordjournals.aje.a113042.

Abstract

In analyzing data from case-control studies to identify association between an exposure variable and disease status, other variables may be considered as potential confounding variables. Even when a variable has no causal association with disease (we assume that in the underlying population it is not related to disease conditional on the exposure variable) and is not a source of selection bias, apparent confounding may occur by chance. Adjusting on such a variable increases variability in the estimate of relative risk. Furthermore, an approach that selects from such variables those which most decrease the relative risk leads to bias in the risk estimate. These two effects lead to reduced statistical significance of the relative risk estimate and can lead to declaring detectable associations as insignificant. Theoretical approximations for quantitating these effects are derived and the adequacy of these approximation is confirmed by simulation. These results demonstrate the danger of overadjustment.

摘要

在分析病例对照研究的数据以确定暴露变量与疾病状态之间的关联时,其他变量可能被视为潜在的混杂变量。即使一个变量与疾病没有因果关联(我们假设在基础人群中,以暴露变量为条件它与疾病无关)且不是选择偏倚的来源,但偶然也可能出现明显的混杂。对这样一个变量进行调整会增加相对风险估计值的变异性。此外,从这些变量中选择那些能最大程度降低相对风险的变量的方法会导致风险估计出现偏差。这两种效应会导致相对风险估计的统计显著性降低,并可能导致将可检测到的关联判定为无显著性。推导出了用于量化这些效应的理论近似值,并通过模拟证实了这些近似值的充分性。这些结果证明了过度调整的危险性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验