Suppr超能文献

猫运动神经元胞体的电压钳制:快速内向电流的特性

Voltage clamp of cat motoneurone somata: properties of the fast inward current.

作者信息

Barrett J N, Crill W E

出版信息

J Physiol. 1980 Jul;304:231-49. doi: 10.1113/jphysiol.1980.sp013322.

Abstract
  1. The soma membrane of cat spinal motoneurones was voltage clamped using separate intracellular voltage and current electrodes directed into the same motoneurone with a new guide system. 2. Antidromic stimulation of the motoneurone's axon or small depolarizing voltage clamp steps (10-20 mV from the resting potential) evoked a small (30-80 nA) all-or-none action potential current, which was shown by occlusion experiments to originate from the initial segment of the axon. Except for this axonal current spike, there was no indication of active (voltage-dependent) conductance changes in membrane regions not under good voltage clamp control. Calculations based on motoneuronal geometry, and electrophysiological recordings from spinal cord neurones in tissue culture, indicate that the proximal portions of dendritic membranes were also under good voltage clamp control. 3. Clamp depolarizations greater than 20 mV activated a fast, transient inward current, which increased in a smoothly graded manner with depolarization between 20 and 40 mV from the resting potential, reaching a peak magnitude of up to 450 nA, and then decreased smoothly for larger depolarizations. Extrapolation of the current-voltage relationship for this current indicated a reversal potential about 80-116 mV positive to the resting potential. 4. This transient inward current is blocked by tetrodotoxin. After a depolarizing voltage clamp step the conductance system controlling this current first activates with fast, non-linear kinetics, and then inactivates with first-order kinetics. These properties are similar to those of the Na conductance system in squid and frog axons. 5. Conditioning-testing experiments showed that the time constant of inactivation ranges from 1.0-1.3 msec at potentials slightly negative to the resting potential to 0.1-0.3 msec for depolarizations 60 mV from the resting potential. The degree of steady-state inactivation also varied with membrane potential, ranging from total inactivation at depolarizations greater than 30 mV from the resting potential, to minimal inactivation at potentials more than 10 mV negative to the resting potential.
摘要
  1. 使用一种新的引导系统,将单独的细胞内电压和电流电极插入同一只猫脊髓运动神经元的胞体膜,对其进行电压钳制。2. 对运动神经元轴突进行逆向刺激或施加小的去极化电压钳制步阶(相对于静息电位为10 - 20 mV),会诱发一个小的(30 - 80 nA)全或无动作电位电流,通过阻断实验表明该电流起源于轴突的起始段。除了这个轴突电流尖峰外,在电压钳制控制不佳的膜区域没有活性(电压依赖性)电导变化的迹象。基于运动神经元几何结构的计算以及组织培养中脊髓神经元的电生理记录表明,树突膜的近端部分也处于良好的电压钳制控制之下。3. 大于20 mV的钳制去极化激活了一个快速、短暂的内向电流,该电流在相对于静息电位20至40 mV的去极化过程中以平滑的分级方式增加,达到高达450 nA的峰值幅度,然后在更大的去极化时平滑下降。该电流的电流 - 电压关系外推表明其反转电位比静息电位正约80 - 116 mV。4. 这种短暂的内向电流被河豚毒素阻断。在去极化电压钳制步阶后,控制该电流的电导系统首先以快速、非线性动力学激活,然后以一级动力学失活。这些特性与鱿鱼和青蛙轴突中的钠电导系统相似。5. 条件 - 测试实验表明,失活的时间常数在略负于静息电位的电位下为1.0 - 1.3毫秒,在相对于静息电位去极化60 mV时为0.1 - 0.3毫秒。稳态失活的程度也随膜电位而变化,从相对于静息电位大于30 mV的去极化时的完全失活到比静息电位负超过10 mV时的最小失活。

相似文献

引用本文的文献

1
4
The basis of sharp spike onset in standard biophysical models.标准生物物理模型中尖锐峰值起始的基础。
PLoS One. 2017 Apr 25;12(4):e0175362. doi: 10.1371/journal.pone.0175362. eCollection 2017.
9
Synaptic control of motoneuronal excitability.运动神经元兴奋性的突触控制
Physiol Rev. 2000 Apr;80(2):767-852. doi: 10.1152/physrev.2000.80.2.767.

本文引用的文献

8
Some electrical measurements of motoneuron parameters.运动神经元参数的一些电学测量。
Biophys J. 1970 Jan;10(1):55-73. doi: 10.1016/S0006-3495(70)86285-3.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验