Suppr超能文献

一种人畜共患病(布鲁氏菌病)流行病学的数学模型(作者译)

[Mathematical model of epidemiology of an anthropozoonose: brucellosis (author's transl)].

作者信息

Arnaud-Bosq C

出版信息

Rev Epidemiol Sante Publique. 1978 Mar 15;25(5-6):387-95.

PMID:746189
Abstract

We are trying to make a model of the epidemiology of Brucellosis by using a two-type branching process. In this text, we are studying the probability of extinction. A complete study on the theory of process with a finite number of types was made by SEVAST'YANOV (1951) [6]. The study of the behaviour of such a process is made with the help of the generating function of the number of infected animals by a single animal. To express this generating function, we start with the same hypothesis as BARTOSZYNSKI [2] (1965) when he makes an interhuman epidemic model by a simple branching process of GALTON-WATSON. However these hypothesis will be modified in order to adapt them to the types of Brucellosis contamination.

摘要

我们正在尝试通过使用一种两类分支过程来构建布鲁氏菌病的流行病学模型。在本文中,我们研究灭绝概率。SEVAST'YANOV(1951年)[6]对具有有限类型数量的过程理论进行了完整研究。此类过程行为的研究借助单个动物感染动物数量的生成函数来进行。为了表达这个生成函数,我们从与BARTOSZYNSKI [2](1965年)相同的假设开始,当时他通过高尔顿 - 沃森的简单分支过程构建人际流行模型。然而,这些假设将被修改以使其适应布鲁氏菌病污染的类型。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验