Suppr超能文献

在具有雪旺细胞缺陷的小鼠突变株(Enr)中,外周神经再生受损。

Impaired peripheral nerve regeneration in a mutant strain of mice (Enr) with a Schwann cell defect.

作者信息

Rath E M, Kelly D, Bouldin T W, Popko B

机构信息

Brain and Development Research Center, University of North Carolina, Chapel Hill 27599-7250, USA.

出版信息

J Neurosci. 1995 Nov;15(11):7226-37. doi: 10.1523/JNEUROSCI.15-11-07226.1995.

Abstract

Schwann cell-axon interactions in the development, maintenance, and regeneration of the normal peripheral nervous system are complex. A previously described transgene-induced insertional mutation (BPFD#36), now referred to as Enervated (Enr), results in disrupted Schwann cell-axon interactions. In this report, after a crush or transection injury to Enr peripheral nerves, we demonstrate impaired nerve regeneration. There are fewer myelinated fibers per mm2 and thinner myelin sheaths surrounding regenerating axons in the nerves of homozygous mutant mice compared to wild type mice at 28 d after crush injury to the sciatic nerve. Abnormal Schwann cell-axon interactions remain in Enr/Enr animals as evidenced by the relatively frequent ultrastructural finding of unmyelinated large diameter axons in the regenerating nerves. Additionally, nerve graft experiments indicate that the impairment in regeneration is due to a Schwann cell defect. Morphologic and morphometric findings in conjunction with molecular analysis of regenerating nerves suggest that the Enr defect causes a disruption in the ability of "early" Schwann cells to differentiate to a more mature phenotype. In mutant homozygous and wild type nerves at 7 d after crush injury there are similar levels of mRNA for the low-affinity nerve growth factor receptor, but in the mutant homozygous regenerating nerves there is 11-fold less mRNA for glial fibrillary acidic protein, a more mature phenotypic marker of Schwann cells. This Schwann cell differentiation defect likely accounts for both the peripheral neuropathy and impaired nerve regeneration observed in Enr mice.

摘要

雪旺细胞与轴突在正常外周神经系统的发育、维持和再生过程中的相互作用十分复杂。先前描述的一种转基因诱导的插入突变(BPFD#36),现称为“失神经支配(Enr)”,会导致雪旺细胞与轴突的相互作用遭到破坏。在本报告中,对Enr外周神经进行挤压或横断损伤后,我们证明了神经再生受损。在坐骨神经挤压损伤后28天,与野生型小鼠相比,纯合突变小鼠神经中每平方毫米的有髓纤维数量更少,再生轴突周围的髓鞘更薄。在Enr/Enr动物中,雪旺细胞与轴突的异常相互作用仍然存在,再生神经中相对频繁出现的无髓大直径轴突的超微结构发现就证明了这一点。此外,神经移植实验表明,再生受损是由于雪旺细胞缺陷所致。再生神经的形态学和形态计量学结果以及分子分析表明,Enr缺陷导致“早期”雪旺细胞向更成熟表型分化的能力受到破坏。在挤压损伤后7天的突变纯合子和野生型神经中,低亲和力神经生长因子受体的mRNA水平相似,但在突变纯合子再生神经中,胶质纤维酸性蛋白(雪旺细胞更成熟的表型标志物)的mRNA水平少11倍。这种雪旺细胞分化缺陷可能是Enr小鼠中观察到的周围神经病变和神经再生受损的原因。

相似文献

10

引用本文的文献

2
Bioprinting: From Tissue and Organ Development to Models.生物打印:从组织和器官发育到模型。
Chem Rev. 2020 Oct 14;120(19):10547-10607. doi: 10.1021/acs.chemrev.9b00789. Epub 2020 May 14.
7
Tissue engineered nerve constructs: where do we stand?组织工程神经构建体:我们目前的进展如何?
J Cell Mol Med. 2006 Apr-Jun;10(2):309-17. doi: 10.1111/j.1582-4934.2006.tb00401.x.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验