Suppr超能文献

Automatic analysis of protein conformational changes by multiple linkage clustering.

作者信息

Boutonnet N S, Rooman M J, Wodak S J

机构信息

Laboratoire de Biochimie Théorique, Institut de Biologie Physico-Chimique, Paris, France.

出版信息

J Mol Biol. 1995 Nov 3;253(4):633-47. doi: 10.1006/jmbi.1995.0578.

Abstract

An automatic algorithm is presented for analyzing protein conformational changes such as those occurring upon substrate binding or in different crystal forms of the same protein. Using, as sole information, the atomic coordinates of a pair of protein structures, the procedure first generates structure alignments, which optimize the root-mean-square deviation of the backbone atoms. To this end, equivalent secondary structures and/or loops from both proteins are combined by a multiple linkage hierarchic clustering algorithm, which generates several intertwined clustering trees. Automatic analysis of these clustering trees is used to dissect the mechanism of the conformational change. It allows the identification of the static core, representing the collection of secondary structures which undergo no structural changes, as well as other entities which move like rigid bodies. It also permits the description of the movement of secondary structures or loops relative to this core or entities. USing this information, it can be inferred whether a particular conformational change involves shear or hinge motion, or components of both. The algorithm is applied to the analysis of the conformational changes of citrate synthase, lactate dehydrogenase, lactoferrin and beta-glucosyltransferase, representing typical examples of shear- and hinge-type mechanisms, and a varied range in movement size. The results are shown to be in excellent agreement with previous analyses, and to provide additional information which gives a more complete and objective picture of the conformational change. Using our automatic algorithm, we find that any conformational change may be viewed as having components of both shear- and hinge-type motion. Determining which of these is most appropriate requires the combination of the information provided by our procedure with detailed knowledge of the protein tertiary structures.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验