Suppr超能文献

使用概念图对患者出院小结进行自动编码

Automated coding of patient discharge summaries using conceptual graphs.

作者信息

Delamarre D, Burgun A, Seka L P, Le Beux P

机构信息

Laboratoire Informatique Médicale, Faculté de Médecine, Université de Rennes I, France.

出版信息

Methods Inf Med. 1995 Sep;34(4):345-51.

PMID:7476465
Abstract

In medicine, as in other domains, indexing and classification is a natural human task which is used for information retrieval and representation. In the medical field, encoding of patient discharge summaries is still a manual time-consuming task. This paper describes an automated coding system of patient discharge summaries from the field of coronary diseases into the ICD-9-CM classification. The system is developed in the context of the European AIM MENELAS project, a natural-language understanding system which uses the conceptual-graph formalism. Indexing is performed by using a two-step processing scheme; a first recognition stage is implemented by a matching procedure and a secondary selection stage is made according to the coding priorities. We show the general features of the necessary translation of the classification terms in the conceptual-graph model, and for the coding rules compliance. An advantage of the system is to provide an objective evaluation and assessment procedure for natural-language understanding.

摘要

在医学领域,如同在其他领域一样,索引和分类是一项自然的人类任务,用于信息检索和表示。在医疗领域,患者出院小结的编码仍然是一项耗时的人工任务。本文描述了一种将冠心病领域的患者出院小结自动编码到ICD - 9 - CM分类系统中的系统。该系统是在欧洲AIM MENELAS项目的背景下开发的,这是一个使用概念图形式主义的自然语言理解系统。索引通过两步处理方案执行;第一步识别阶段由匹配程序实现,第二步选择阶段根据编码优先级进行。我们展示了概念图模型中分类术语必要转换的一般特征以及编码规则的遵循情况。该系统的一个优点是为自然语言理解提供了客观的评估程序。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验