Collin C, Devane W A, Dahl D, Lee C J, Axelrod J, Alkon D L
Laboratory of Adaptive Systems, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA.
Proc Natl Acad Sci U S A. 1995 Oct 24;92(22):10167-71. doi: 10.1073/pnas.92.22.10167.
Evidence is presented for a distinctive type of hippocampal synaptic modification [previously described for a molluscan gamma-aminobutyric acid (GABA) synapse after paired pre- and postsynaptic excitation]: transformation of GABA-mediated synaptic inhibition into synaptic excitation. This transformation persists with no further paired stimulation for 60 min or longer and is termed long-term transformation. Long-term transformation is shown to contribute to pairing-induced long-term potentiation but not to long-term potentiation induced by presynaptic stimulation alone. Further support for such mechanistic divergence is provided by pharmacologic effects on long-term transformation as well as these two forms of long-term potentiation by Cl- channel blockers, glutamate and GABA antagonists, as well as the endogenous cannabinoid ligand anandamide.