Suppr超能文献

An improved muscle-reflex actuator for use in large-scale neuro-musculoskeletal models.

作者信息

Winters J M

机构信息

Department of Mechanical Engineering, Catholic University of America, Washington, DC 20064, USA.

出版信息

Ann Biomed Eng. 1995 Jul-Aug;23(4):359-74. doi: 10.1007/BF02584437.

Abstract

This paper extends the systematic approach described in Winters and Stark (62) for developing muscle models. The underlying motivation is our finding that for larger scale shoulder and head-neck postural systems to be mechanically stable, open-loop muscle properties are often not sufficient. There are three primary contributions. First, the previous muscle mechanical model structure and parameter estimation process of (62) is updated to reflect recent experimental findings. Second, an intrafusal (IF) muscle model is developed that includes a gamma static motoneuron (MN) drive, a Hill muscle model, and a muscle spindle sensor across the IF series element; this provides a more appropriate muscle spindle output signal, especially for studies of posture. Third, the conceptual cut between the neuro-control input and the actuator is raised from just below the MN summing junction to a higher location, allowing a "muscle-reflex actuator" to be defined that satisfies the formal theoretical requirement for possessing passive spring-like behavior when the neurocontrol input is constant, alpha-gamma MN coactivation is assumed, and three types of intrinsic autogenic reflex responses (spindle, Golgi tendon organ, Rhenshaw cell) are developed. Default feedback gains are set based on the criteria that inherent feedback should not sculpt the feedforward excitation drive by more than +/- 10% of maximum. This new actuator model only mildly affects voluntary goal-directed dynamic performance, but enhances spring-like performance around the postural equilibrium state, in line with available animal and human studies and with several theories on postural regulation.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验