Vincent M J, Abdul Jabbar M
Department of Molecular Biology, Cleveland Clinic Foundation, Ohio 44195, USA.
Virology. 1995 Nov 10;213(2):639-49. doi: 10.1006/viro.1995.0035.
HIV-1 Vpu is a small transmembrane phosphoprotein of 16 kDa which performs critical roles in CD4 proteolysis and virus release. Previous studies have demonstrated that Vpu-induced degradation of CD4 occurs in the endoplasmic reticulum (ER), and that the proteolytic process is sequence specific requiring both the transmembrane and cytoplasmic domains of CD4. In the present study, we investigated the effects of Vpu expression on the intracellular membrane trafficking pathway of mammalian cells. In singly transfected cells, the HIV envelope glycoproteins and vesicular stomatitis virus glycoprotein (VSV G) were properly transported to the cell surface undergoing oligosaccharide modifications characteristic of their movement through the Golgi complex. In contrast, the cell surface delivery of glycoproteins was severely impeded in cells expressing Vpu. Biochemical analyses revealed that Vpu expression blocked the transfer of proteins from the ER-Golgi complex to the plasma membrane in a dose- and protein-dependent manner. Soluble gp120 exhibited extreme transport defects in the presence of Vpu, whereas transmembrane proteins (e.g., gp160, VSV) responded only moderately to wild-type Vpu. To gain insight into Vpu-mediated transport inhibition, we performed mutational analysis of the CK-2 phosphorylation sites (serines at 52 and 56) in the Vpu protein. CK-2 phosphorylation of Vpu has been shown to regulate the activity of the protein in reactions that involve the proteolysis of CD4 in the ER. We demonstrate here that the phosphorylation mutant is defective in both sequence-specific degradation of VRE-containing substrates and the transport inhibition of gp120 and VSV-G in the secretory pathway. Thus, these experiments have revealed that Vpu-mediated proteolysis and transport inhibition are mechanistically coupled requiring the same structural elements of the Vpu protein in both processes. We propose that the primary effect of Vpu expression is to impede the secretion process and then access glycoproteins bearing the VRE for Vpu-mediated proteolysis in the ER of mammalian cells.
HIV-1 Vpu是一种16 kDa的小跨膜磷蛋白,在CD4蛋白水解和病毒释放中发挥关键作用。先前的研究表明,Vpu诱导的CD4降解发生在内质网(ER)中,并且蛋白水解过程具有序列特异性,需要CD4的跨膜和胞质结构域。在本研究中,我们研究了Vpu表达对哺乳动物细胞内膜运输途径的影响。在单独转染的细胞中,HIV包膜糖蛋白和水疱性口炎病毒糖蛋白(VSV G)被正确转运到细胞表面,并经历了通过高尔基体复合物移动所特有的寡糖修饰。相比之下,在表达Vpu的细胞中,糖蛋白向细胞表面的递送受到严重阻碍。生化分析表明,Vpu表达以剂量和蛋白质依赖性方式阻断了蛋白质从内质网-高尔基体复合物向质膜的转运。在Vpu存在的情况下,可溶性gp120表现出极端的运输缺陷,而跨膜蛋白(如gp160、VSV)对野生型Vpu的反应仅为中度。为了深入了解Vpu介导的运输抑制作用,我们对Vpu蛋白中的CK-2磷酸化位点(第52和56位丝氨酸)进行了突变分析。已证明Vpu的CK-2磷酸化在涉及内质网中CD4蛋白水解的反应中调节该蛋白的活性。我们在此证明,磷酸化突变体在含VRE底物的序列特异性降解以及分泌途径中gp120和VSV-G的运输抑制方面均存在缺陷。因此,这些实验表明,Vpu介导的蛋白水解和运输抑制在机制上是相互关联的,两个过程都需要Vpu蛋白的相同结构元件。我们提出,Vpu表达的主要作用是阻碍分泌过程,然后使带有VRE的糖蛋白进入内质网,以便在哺乳动物细胞的内质网中进行Vpu介导的蛋白水解。