Wang L, Ruvinov S, Strausberg S, Gallagher D T, Gilliland G, Bryan P N
Center for Advanced Research in Biotechnology, University of Maryland Biotechnology Institute, Rockville 20850, USA.
Biochemistry. 1995 Nov 28;34(47):15415-20. doi: 10.1021/bi00047a004.
The in vivo folding of subtilisin is dependent on a 77 amino acid prosequence, which is eventually cleaved from the N-terminus of subtilisin to create the 275 amino acid mature form of the enzyme. The recent determination of the structure of a complex of the prodomain and a calcium-free subtilisin mutant has suggested how the prodomain may catalyze subtilisin folding [Bryan, P., Wang, L., Hoskins, J., Ruvinov, S., Strausberg, S., Alexander, P., Almog, O., Gilliland, G., & Gallagher, T. (1995) Biochemistry 34, 10310-10318]. In the complex, the prodomain packs against the two parallel surface helices of subtilisin (residues 104-116 and residues 133-144) and supplies caps to the N-termini of the two helices. The binding site is contained almost entirely in the linear sequence 100-144 of subtilisin. The C-terminus of the prodomain (residues 72-77) extends out from its central part to bind like a substrate in subtilisin's active site cleft. The simplest model of catalyzed folding is one in which the observed binding interaction in the complex accelerates folding by stabilizing an intermediate which includes the 45 amino acid alpha beta alpha substructure in subtilisin. According to our hypothesis, amino acids 100-144 would have a native-like fold in the intermediate which the prodomain stabilizes. Guided by the structure of the bimolecular complex of subtilisin and its prodomain, we have constructed mutations in the C-terminal region of the prodomain. Analysis of five mutants reveals a general correlation between the ability of the prodomain to bind to native subtilisin and its ability to accelerate subtilisin folding.(ABSTRACT TRUNCATED AT 250 WORDS)
枯草杆菌蛋白酶的体内折叠依赖于一段77个氨基酸的前导序列,该序列最终从枯草杆菌蛋白酶的N端被切割下来,从而产生275个氨基酸的成熟酶形式。最近对前结构域与无钙枯草杆菌蛋白酶突变体复合物结构的测定表明了前结构域可能如何催化枯草杆菌蛋白酶的折叠[布莱恩,P.,王,L.,霍斯金斯,J.,鲁维诺夫,S.,施特劳斯伯格,S.,亚历山大,P.,阿尔莫格,O.,吉利兰,G.,&加拉格尔,T.(1995年)《生物化学》34卷,10310 - 10318页]。在复合物中,前结构域紧贴枯草杆菌蛋白酶的两个平行表面螺旋(残基104 - 116和残基133 - 144),并为这两个螺旋的N端提供帽状结构。结合位点几乎完全包含在枯草杆菌蛋白酶的线性序列100 - 144中。前结构域的C端(残基72 - 77)从其中心部分伸出,像底物一样结合在枯草杆菌蛋白酶的活性位点裂隙中。催化折叠的最简单模型是,复合物中观察到的结合相互作用通过稳定一个中间体来加速折叠,该中间体包括枯草杆菌蛋白酶中45个氨基酸的αβ-α亚结构。根据我们的假设,氨基酸100 - 144在被前结构域稳定的中间体中会具有类似天然的折叠。在前结构域与枯草杆菌蛋白酶的双分子复合物结构的指导下,我们在前结构域的C端区域构建了突变。对五个突变体的分析揭示了前结构域与天然枯草杆菌蛋白酶结合的能力与其加速枯草杆菌蛋白酶折叠的能力之间的普遍相关性。(摘要截短至250字)