Suppr超能文献

酿酒酵母形态分化的突变分析。

Mutational analysis of morphologic differentiation in Saccharomyces cerevisiae.

作者信息

Blacketer M J, Madaule P, Myers A M

机构信息

Department of Biochemistry and Biophysics, Iowa State University, Ames 50011, USA.

出版信息

Genetics. 1995 Aug;140(4):1259-75. doi: 10.1093/genetics/140.4.1259.

Abstract

A genetic analysis was undertaken to investigate the mechanisms controlling cellular morphogenesis in Saccharomyces cerevisiae. Sixty mutant strains exhibiting abnormally elongated cell morphology were isolated. The cell elongation phenotype in at least 26 of the strains resulted from a single recessive mutation. These mutations, designated generically elm (elongated morphology), defined 14 genes; two of these corresponded to the previously described genes GRR1 and CDC12. Genetic interactions between mutant alleles suggest that several ELM genes play roles in the same physiological process. The cell and colony morphology and growth properties of many elm mutant strains are similar to those of wild-type yeast strains after differentiation in response to nitrogen limitation into the pseudohyphal form. Each elm mutation resulted in multiple characteristics of pseudohyphal cells, including elongated cell shape, delay in cell separation, simultaneous budding of mother and daughter cells, a unipolar budding pattern, and/or the ability to grow invasively beneath the agar surface. Mutations in 11 of the 14 ELM gene loci potentiated pseudohyphal differentiation in nitrogen-limited medium. Thus, a subset of the ELM genes are likely to affect control or execution of a defined morphologic differentiation pathway in S. cerevisiae.

摘要

开展了一项遗传分析,以研究酿酒酵母中控制细胞形态发生的机制。分离出60个表现出异常细长细胞形态的突变菌株。至少26个菌株的细胞伸长表型是由单个隐性突变引起的。这些突变被统称为elm(伸长形态),定义了14个基因;其中两个对应于先前描述的基因GRR1和CDC12。突变等位基因之间的遗传相互作用表明,几个ELM基因在同一生理过程中发挥作用。许多elm突变菌株在响应氮限制分化为假菌丝体形式后,其细胞和菌落形态以及生长特性与野生型酵母菌株相似。每个elm突变都导致了假菌丝体细胞的多种特征,包括细胞形状伸长、细胞分离延迟、母细胞和子细胞同时出芽、单极出芽模式,和/或在琼脂表面下侵入性生长的能力。14个ELM基因座中的11个发生突变,增强了在氮限制培养基中的假菌丝体分化。因此,一部分ELM基因可能会影响酿酒酵母中特定形态分化途径的控制或执行。

相似文献

1
Mutational analysis of morphologic differentiation in Saccharomyces cerevisiae.
Genetics. 1995 Aug;140(4):1259-75. doi: 10.1093/genetics/140.4.1259.
2
The GRR1 gene of Candida albicans is involved in the negative control of pseudohyphal morphogenesis.
Fungal Genet Biol. 2006 Aug;43(8):573-82. doi: 10.1016/j.fgb.2006.03.004. Epub 2006 May 26.
4
Yeast pseudohyphal growth is regulated by GPA2, a G protein alpha homolog.
EMBO J. 1997 Dec 1;16(23):7008-18. doi: 10.1093/emboj/16.23.7008.

引用本文的文献

1
Translational Reprogramming Provides a Blueprint for Cellular Adaptation.
Cell Chem Biol. 2018 Nov 15;25(11):1372-1379.e3. doi: 10.1016/j.chembiol.2018.08.003. Epub 2018 Aug 30.
2
Kinetic partitioning during de novo septin filament assembly creates a critical G1 "window of opportunity" for mutant septin function.
Cell Cycle. 2016 Sep 16;15(18):2441-53. doi: 10.1080/15384101.2016.1196304. Epub 2016 Jul 11.
3
Skp2-dependent ubiquitination and activation of LKB1 is essential for cancer cell survival under energy stress.
Mol Cell. 2015 Mar 19;57(6):1022-1033. doi: 10.1016/j.molcel.2015.01.015. Epub 2015 Feb 26.
5
Ime1 and Ime2 are required for pseudohyphal growth of Saccharomyces cerevisiae on nonfermentable carbon sources.
Mol Cell Biol. 2010 Dec;30(23):5514-30. doi: 10.1128/MCB.00390-10. Epub 2010 Sep 27.
6
Comprehensive and quantitative analysis of yeast deletion mutants defective in apical and isotropic bud growth.
Curr Genet. 2009 Aug;55(4):365-80. doi: 10.1007/s00294-009-0251-0. Epub 2009 May 24.
7
A novel genetic screen implicates Elm1 in the inactivation of the yeast transcription factor SBF.
PLoS One. 2008 Jan 30;3(1):e1500. doi: 10.1371/journal.pone.0001500.
8
Glucose signaling in Saccharomyces cerevisiae.
Microbiol Mol Biol Rev. 2006 Mar;70(1):253-82. doi: 10.1128/MMBR.70.1.253-282.2006.
9
Degradation of Hof1 by SCF(Grr1) is important for actomyosin contraction during cytokinesis in yeast.
EMBO J. 2005 Apr 6;24(7):1440-52. doi: 10.1038/sj.emboj.7600627. Epub 2005 Mar 17.
10
Glucose inhibits meiotic DNA replication through SCFGrr1p-dependent destruction of Ime2p kinase.
Mol Cell Biol. 2005 Jan;25(1):440-50. doi: 10.1128/MCB.25.1.440-450.2005.

本文引用的文献

1
Genetic Control of the Cell Division Cycle in Yeast: V. Genetic Analysis of cdc Mutants.
Genetics. 1973 Jun;74(2):267-86. doi: 10.1093/genetics/74.2.267.
2
Bud position in Saccharomyces cerevisiae.
J Bacteriol. 1960 Oct;80(4):567-8. doi: 10.1128/jb.80.4.567-568.1960.
3
Characteristic growth patterns of the different members of a polyploid series of Saccharomyces.
J Bacteriol. 1954 Apr;67(4):480-3. doi: 10.1128/jb.67.4.480-483.1954.
4
The COT2 gene is required for glucose-dependent divalent cation transport in Saccharomyces cerevisiae.
Mol Cell Biol. 1993 Apr;13(4):2041-9. doi: 10.1128/mcb.13.4.2041-2049.1993.
5
Morphogenesis in the yeast cell cycle: regulation by Cdc28 and cyclins.
J Cell Biol. 1993 Mar;120(6):1305-20. doi: 10.1083/jcb.120.6.1305.
10
Elements of the yeast pheromone response pathway required for filamentous growth of diploids.
Science. 1993 Dec 10;262(5140):1741-4. doi: 10.1126/science.8259520.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验