Galli A, DeFelice L J, Duke B J, Moore K R, Blakely R D
Department of Anatomy and Cell Biology, Emory University School of Medicine, Atlanta GA 30322, USA.
J Exp Biol. 1995 Oct;198(Pt 10):2197-212. doi: 10.1242/jeb.198.10.2197.
Transport of norepinephrine (NE+) by cocaine- and antidepressant-sensitive transporters in presynaptic terminals is predicted to involve the cotransport of Na+ and Cl-, resulting in a net movement of charge per transport cycle. To explore the relationship between catecholamine transport and ion permeation through the NE transporter, we established a human norepinephrine transporter (hNET) cell line suitable for biochemical analysis and patch-clamp recording. Stable transfection of hNET cDNA into HEK-293 (human embryonic kidney) cells results in lines exhibiting (1) a high number of transporter copies per cell (10(6)), as detected by radioligand binding and hNET-specific antibodies, (2) high-affinity, Na(+)-dependent transport of NE, and (3) inhibitor sensitivities similar to those of native membranes. Whole-cell voltage-clamp of hNET-293 cells reveals NE-induced, Na(+)-dependent currents blocked by antidepressants and cocaine that are absent in parental cells. In addition to NE-dependent currents, transfected cells posses an NE-independent mode of charge movement mediated by hNET. hNET antagonists without effect in non-transfected cells abolish both NE-dependent and NE-independent modes of charge movement in transfected cells. The magnitude of NE-dependent currents in these cells exceeds the expectations of simple carrier models using previous estimates of transport rates. To explain our observations, we propose that hNETs function as ion-gated ligand channels with an indefinite stoichiometry relating ion flux to NE transport. In this view, external Na+ and NE bind to the transporter with finite affinities in a cooperative fashion. However, coupled transport may not predict the magnitude or the kinetics of the total current through the transporter. We propose instead that Na+ gates NE transport and also the parallel inward flux of an indeterminate number of ions through a channel-like pore.
据预测,去甲肾上腺素(NE+)在突触前终末通过可卡因和抗抑郁药敏感的转运体进行转运时,会伴随着Na+和Cl-的协同转运,从而导致每个转运周期有净电荷移动。为了探究儿茶酚胺转运与离子通过NE转运体的渗透之间的关系,我们建立了一种适合生化分析和膜片钳记录的人去甲肾上腺素转运体(hNET)细胞系。将hNET cDNA稳定转染到HEK - 293(人胚肾)细胞中,得到的细胞系表现出:(1)通过放射性配体结合和hNET特异性抗体检测,每个细胞有大量的转运体拷贝(10(6));(2)对NE具有高亲和力、Na(+)依赖性转运;(3)抑制剂敏感性与天然膜相似。对hNET - 293细胞进行全细胞电压钳记录发现,NE诱导的、Na(+)依赖性电流被抗抑郁药和可卡因阻断,而亲本细胞中不存在这种电流。除了NE依赖性电流外,转染细胞还具有由hNET介导的NE非依赖性电荷移动模式。在未转染细胞中无作用的hNET拮抗剂可消除转染细胞中NE依赖性和NE非依赖性电荷移动模式。这些细胞中NE依赖性电流的大小超过了使用先前转运速率估计值的简单载体模型的预期。为了解释我们的观察结果,我们提出hNET作为离子门控配体通道发挥作用,其离子通量与NE转运之间存在不确定的化学计量关系。按照这种观点,外部Na+和NE以协同方式以有限亲和力结合到转运体上。然而,耦联转运可能无法预测通过转运体的总电流的大小或动力学。相反,我们提出Na+开启NE转运以及通过类似通道的孔道使数量不确定的离子平行向内流动。