Suppr超能文献

计数与率的回归分析:泊松模型、过度分散泊松模型和负二项式模型。

Regression analyses of counts and rates: Poisson, overdispersed Poisson, and negative binomial models.

作者信息

Gardner W, Mulvey E P, Shaw E C

机构信息

Western Psychiatric Institute and Clinic, University of Pittsburgh School of Medicine, Pennsylvania 15213, USA.

出版信息

Psychol Bull. 1995 Nov;118(3):392-404. doi: 10.1037/0033-2909.118.3.392.

Abstract

The regression models appropriate for counted data have seen little use in psychology. This article describes problems that occur when ordinary linear regression is used to analyze count data and presents 3 alternative regression models. The simplest, the Poisson regression model, is likely to be misleading unless restrictive assumptions are met because individual counts are usually more variable ("overdispersed") than is implied by the model. This model can be modified in 2 ways to accomodate this problem. In the overdispersed model, a factor can be estimated that corrects the regression model's inferential statistics. In the second alternative, the negative binomial regression model, a random term reflecting unexplained between-subject differences is included in the regression model. The authors compare the advantages of these approaches.

摘要

适用于计数数据的回归模型在心理学中很少被使用。本文描述了使用普通线性回归分析计数数据时出现的问题,并提出了3种替代回归模型。最简单的泊松回归模型,除非满足严格的假设,否则可能会产生误导,因为个体计数通常比模型所暗示的更具变异性(“过度分散”)。该模型可以通过两种方式进行修改以适应这个问题。在过度分散模型中,可以估计一个因子来校正回归模型的推断统计量。在第二种替代方法,即负二项回归模型中,回归模型中包含一个反映受试者间无法解释差异的随机项。作者比较了这些方法的优点。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验