Moore L E, Kirsch J R, Helfaer M A, Tobin J R, McPherson R W, Traystman R J
Department of Anesthesiology/Critical Care Medicine, Johns Hopkins Medical Institutions, Baltimore, Maryland.
Anesthesiology. 1994 Jun;80(6):1328-37. doi: 10.1097/00000542-199406000-00021.
The mechanism of isoflurane-induced cerebral hyperemia is poorly understood. Data from studies in vitro suggest that volatile anesthetics release a vasodilator prostanoid. We hypothesized that prostanoids and nitric oxide (NO) are mediators of this response in vivo. If true, inhibition of cyclooxygenase by indomethacin (5 mg/kg intravenously) or of nitric oxide synthase by N omega-nitro-L-arginine methyl ester (L-NAME; 40 mg/kg intravenously) should attenuate isoflurane-induced hyperemia. Any response to L-NAME occurring via nitric oxide should be competitively reversed by L-arginine.
The cerebral blood flow (microsphere) response to 1 MAC isoflurane was tested at three time points (0, 90, and 180 min) in pentobarbital-anesthetized pigs. Isoflurane challenges were separated by 60-min periods of continuous intravenous pentobarbital alone. Control animals (n = 7) received no additional pharmacologic intervention. Experimental animals were randomized to receive L-NAME before the second and indomethacin before the third isoflurane challenge (n = 7); L-NAME before the second and L-arginine (400 mg/kg intravenously) before the third isoflurane challenge (n = 9); or indomethacin before the second and L-NAME before the third isoflurane challenge (n = 8).
In control animals, isoflurane reproducibly increased cerebral blood flow (whole brain; 113 +/- 18%, 120 +/- 18%, and 103 +/- 19% increase above baseline at each time point, respectively). Both indomethacin and L-NAME attenuated (10 +/- 10% and 52 +/- 11% increase, respectively) the hyperemic response to isoflurane. The effect of L-NAME was reversed by L-arginine.
We conclude that both prostanoids and nitric oxide contribute to isoflurane-induced hyperemia. We are unable to determine from our data what, if any, interaction exists between these two mechanisms.
异氟烷诱导脑充血的机制尚不清楚。体外研究数据表明,挥发性麻醉药可释放一种血管舒张性前列腺素。我们假设前列腺素和一氧化氮(NO)是这种体内反应的介质。如果真是这样,静脉注射吲哚美辛(5毫克/千克)抑制环氧化酶或静脉注射Nω-硝基-L-精氨酸甲酯(L-NAME;40毫克/千克)抑制一氧化氮合酶应能减轻异氟烷诱导的充血。通过一氧化氮对L-NAME产生的任何反应都应被L-精氨酸竞争性逆转。
在戊巴比妥麻醉的猪身上,于三个时间点(0、90和180分钟)测试对1 MAC异氟烷的脑血流量(微球法)反应。异氟烷激发试验之间间隔60分钟持续静脉注射戊巴比妥。对照动物(n = 7)未接受额外的药物干预。实验动物被随机分为三组,分别在第二次异氟烷激发试验前接受L-NAME,第三次异氟烷激发试验前接受吲哚美辛(n = 7);第二次异氟烷激发试验前接受L-NAME,第三次异氟烷激发试验前接受L-精氨酸(静脉注射400毫克/千克)(n = 9);第二次异氟烷激发试验前接受吲哚美辛,第三次异氟烷激发试验前接受L-NAME(n = 8)。
在对照动物中,异氟烷可重复性地增加脑血流量(全脑;在每个时间点分别比基线增加113±18%、120±18%和103±19%)。吲哚美辛和L-NAME均减弱了对异氟烷的充血反应(分别增加10±10%和52±11%)。L-NAME的作用被L-精氨酸逆转。
我们得出结论,前列腺素和一氧化氮均促成异氟烷诱导的充血。我们无法从数据中确定这两种机制之间是否存在相互作用(若存在,是何种相互作用)。