McPherson R W, Kirsch J R, Ghaly R F, Traystman R J
Department of Anesthesiology/Critical Care Medicine, Johns Hopkins Medical Institutions, Baltimore, Md 21287, USA.
Stroke. 1995 Apr;26(4):682-7. doi: 10.1161/01.str.26.4.682.
The role of nitric oxide in cerebrovascular response to changes in PCO2 is unclear. In the present study, we assessed responses at two levels of hypercapnia in a primate model before and after blockade of nitric oxide synthesis.
We compared the effects of two levels of hypercapnia, defined as PCO2 of approximately 70 mm Hg (high-CO2 group, n = 5) and PCO2 of approximately 50 mm Hg (moderate-CO2 group, n = 6), on increases in regional cerebral blood flow (microspheres) before and after inhibition of nitric oxide synthase with N omega-nitro-L-arginine methyl ester (L-NAME; 60 mg.kg-1) in isoflurane-anesthetized cynomolgus monkeys (1.0% end-tidal concentration).
Before L-NAME administration, hypercapnia increased flow in all regions (eg, forebrain, high-CO2 group 69 +/- 10 to 166 +/- 15 mL.min-1.100 g-1; moderate-CO2 group, 49 +/- 7 to 93 +/- 15 mL.min-1.100 g-1) and decreased cerebral vascular resistance (high-CO2, 1.1 +/- 0.1 to 0.4 +/- 0.1 mm Hg.mL-1.min.100 g; moderate-CO2, 1.4 +/- 0.1 to 0.7 +/- 0.1 mm Hg.mL-1.min.100 g). During normocapnia, L-NAME decreased cerebral blood flow (high-CO2, 37 +/- 9%; moderate-CO2, 40 +/- 6%) and increased cerebral vascular resistance (high-CO2, 93 +/- 33%; moderate-CO2, 88 +/- 20%). After L-NAME, hypercapnia still increased blood flow in all regions (eg, forebrain: high-CO2, 56 +/- 7 to 128 +/- 3 mL.min-1.100 g-1, moderate-CO2, 36 +/- 5 to 57 +/- 8 mL.min-1.100 g-1) and decreased vascular resistance (high-CO2, 1.5 +/- 0.1 to 0.6 +/- 0.1 mm Hg.mL-1.min.100 g; moderate-CO2, 2.0 +/- 0.3 to 1.2 +/- 0.1 mm Hg.mL-1.min.100 g). In both groups L-NAME attenuated hypercapnia hyperemia by approximately 30% in cortex but not in other regions.
Nitric oxide contributes to basal vascular tone but is not a major contributor to the mechanism of hypercapnia-induced cerebral vasodilation, except in cortex, in primates.
一氧化氮在脑血管对PCO2变化的反应中所起的作用尚不清楚。在本研究中,我们在灵长类动物模型中评估了一氧化氮合成被阻断前后两种高碳酸血症水平下的反应。
我们比较了两种高碳酸血症水平(定义为PCO2约为70 mmHg的高二氧化碳组,n = 5;PCO2约为50 mmHg的中度二氧化碳组,n = 6)对异氟烷麻醉的食蟹猴(呼气末浓度1.0%)用Nω-硝基-L-精氨酸甲酯(L-NAME;60 mg·kg-1)抑制一氧化氮合酶前后局部脑血流量增加(微球法)的影响。
在给予L-NAME之前,高碳酸血症使所有区域的血流量增加(例如,前脑:高二氧化碳组从69±10增加到166±15 mL·min-1·100 g-1;中度二氧化碳组从49±7增加到93±15 mL·min-1·100 g-1),并降低脑血管阻力(高二氧化碳组从1.1±0.1降低到0.4±0.1 mmHg·mL-1·min·100 g;中度二氧化碳组从1.4±0.1降低到0.7±0.1 mmHg·mL-1·min·100 g)。在正常碳酸血症期间,L-NAME降低了脑血流量(高二氧化碳组降低37±9%;中度二氧化碳组降低40±6%),并增加了脑血管阻力(高二氧化碳组增加93±33%;中度二氧化碳组增加88±20%)。给予L-NAME后,高碳酸血症仍使所有区域的血流量增加(例如,前脑:高二氧化碳组从56±7增加到128±3 mL·min-1·100 g-1,中度二氧化碳组从36±5增加到57±8 mL·min-1·100 g-1),并降低血管阻力(高二氧化碳组从1.5±0.1降低到0.6±0.1 mmHg·mL-1·min·100 g;中度二氧化碳组从2.0±0.3降低到1.2±0.1 mmHg·mL-1·min·100 g)。在两组中,L-NAME使皮质中的高碳酸血症性充血减弱约30%,但在其他区域则不然。
一氧化氮有助于维持基础血管张力,但在灵长类动物中,除皮质外,它不是高碳酸血症诱导脑血管舒张机制的主要贡献因素。