Suppr超能文献

Cyclic strain increases endothelial nitric oxide synthase activity.

作者信息

Awolesi M A, Widmann M D, Sessa W C, Sumpio B E

机构信息

Department of Surgery and Pharmacology, Yale University School of Medicine, New Haven, CT 06510.

出版信息

Surgery. 1994 Aug;116(2):439-44; discussion 444-5.

PMID:7519368
Abstract

BACKGROUND

Endothelial nitric oxide synthase (eNOS) is an important enzyme that controls the production of a potent vascular smooth muscle relaxing factor, nitric oxide. However, the role of hemodynamic forces (blood pressure, cyclic strain, and shear stress) on the regulation of eNOS has not been fully elucidated. Recently, we showed that cyclic strain increases eNOS gene and protein in cultured bovine aortic endothelial cells (EC). Because an increase in gene transcription and protein synthesis may not necessarily translate into an increase in functional activity, the aim of this study was to determine the effects of cyclic strain on eNOS activity.

METHODS

EC were seeded onto plates with flexible bottoms that can be deformed by vacuum and were then exposed to 60 cycles/minute of either 24% maximum strain (-20 kPa vacuum) or 10% maximum strain (-5 kPa vacuum) for 24 hours. eNOS activity was assessed, and nitric oxide production was determined (as nitrite) by the Greiss reaction.

RESULTS

Twenty-four percent strain, at 60 cycles/min, but not 10% strain significantly increases eNOS activity compared with stationary controls. Both strain regimens increased nitric oxide (as nitrite) in culture media compared with stationary controls, although nitrite in media of EC exposed to high strain were significantly increased compared with the lower strain.

CONCLUSIONS

Cyclic strain increases eNOS activity in cultured bovine aortic EC. These results may indicate the importance of hemodynamic forces in the regulation of eNOS in vivo.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验