Suppr超能文献

短路技术的改进及其在天蚕中肠钾离子主动转运中的应用。

Refinements in the short-circuit technique and its application to active potassium transport across the cecropia midgut.

作者信息

Wood J L, Moreton R B

出版信息

J Exp Biol. 1978 Dec;77:123-40. doi: 10.1242/jeb.77.1.123.

Abstract
  1. The conventional, two-electrode method for measuring potential difference across an epithelium is subject to error due to potential gradients caused by current flow in the bathing medium. Mathematical analysis shows that the error in measuring short-circuit current is proportional to the resistivity of the bathing medium and to the separation of the two recording electrodes. It is particularly serious for the insect larval midgut, where the resistivity of the medium is high, and that of the tissue is low. 2. A system has been devised, which uses a third recording electrode to monitor directly the potential gradient in the bathing medium. By suitable electrical connexions, the gradient can be automatically compensated, leaving a residual error which depends on the thickness of the tissue, but not on the electrode separation. Because the thicknesses of most epithelia are smaller than the smallest practical electrode spacing, this error is smaller than that inherent in a two-electrode system. 3. Since voltage-gradients are automatically compensated, it is possible to obtain continuous readings of potential and current. A 'voltage-clamp' circuit is described, which allows the time-course of the short-circuit current to be studied. 4.The three-electrode system has been used to study the larval midgut of Hyalophora cecropia. The average results from five experiments were: initial potential difference (open-circuit): 98+/-11 mV (S.E.M.); short-circuit current at time 60 min: 498+/-160 microA cm=2; 'steady-state' resistance at 60 min: 150+/-26 omega cm2. The current is equivalent to a net potassium transport of 18.6 mu-equiv cm-2 h-1. 5. The electrical parameters of the midgut change rapidly with time. The potential difference decays with a half-time of about 158 min, the resistance increases with a half-time of about 16 min, and the short-circuit current decays as the sum of two exponential terms, with half-times of about 16 and 158 min respectively. In addition, potential and short-circuit current show transient responses to step changes. 6. The properties of the midgut are compared with those of other transporting epithelia, and their dependence on the degree of folding of the preparation is discussed. Their time-dependence is discussed in the context of changes in potassium content of the tissue, and the implications for measurements depending on the assumption of a steady state are outlined.
摘要
  1. 传统的测量上皮细胞跨膜电位差的双电极方法,会因浴液中电流流动引起的电位梯度而产生误差。数学分析表明,测量短路电流时的误差与浴液的电阻率以及两个记录电极之间的距离成正比。对于昆虫幼虫中肠来说,这种误差尤为严重,因为其中浴液的电阻率高,而组织的电阻率低。2. 现已设计出一种系统,该系统使用第三个记录电极直接监测浴液中的电位梯度。通过适当的电气连接,可以自动补偿该梯度,从而留下一个仅取决于组织厚度而非电极间距的残余误差。由于大多数上皮组织的厚度小于实际可行的最小电极间距,所以这个误差比双电极系统固有的误差要小。3. 由于电压梯度能够自动补偿,因此可以获得电位和电流的连续读数。文中描述了一种“电压钳”电路,该电路可用于研究短路电流随时间的变化过程。4. 三电极系统已用于研究天蚕蛾幼虫的中肠。五个实验的平均结果如下:初始电位差(开路):98±11毫伏(标准误);60分钟时的短路电流:498±160微安/平方厘米;60分钟时的“稳态”电阻:150±26欧姆·平方厘米。该电流相当于钾的净转运量为18.6微当量/平方厘米·小时。5. 中肠的电学参数随时间迅速变化。电位差以约158分钟的半衰期衰减,电阻以约16分钟的半衰期增加,短路电流则以两个指数项之和的形式衰减,半衰期分别约为16分钟和158分钟。此外,电位和短路电流对阶跃变化呈现瞬态响应。6. 将中肠的特性与其他转运上皮组织的特性进行了比较,并讨论了它们对标本折叠程度的依赖性。在组织钾含量变化的背景下讨论了它们的时间依赖性,并概述了基于稳态假设的测量所涉及的影响。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验