Gassner G, Wang L, Batie C, Ballou D P
Department of Biological Chemistry, University of Michigan, Ann Arbor 48109-0606.
Biochemistry. 1994 Oct 11;33(40):12184-93. doi: 10.1021/bi00206a022.
Phthalate dioxygenase reductase (PDR) is an electron transferase that contains FMN, which accepts a hydride from NADH, and a [2Fe-2S] center, which transfers electrons to phthalate dioxygenase. The reduction of PDR by NADH has been studied by stopped-flow spectroscopy. Data from studies using both portio- and deuterio-NADH were analyzed by nonlinear curve fitting and numerical simulation techniques. The results of these analyses indicate that the reductive half-reaction of PDR consists of five distinct kinetic phases: (a) NADH binds to form a primary Michaelis complex (MC-1) (Kd = 50 microM). (b) The enzyme undergoes a structural change (116 +/- 5 s-1) resulting in a charge-transfer complex (CT-1). (c) The next phase in the reaction shows a deuterium isotope effect of 7.0 when (4R)-[2H]NADH (NADD) is substituted for NADH, identifying this step as the one involving hydride transfer. The rate of hydride transfer from NADH to FMN is 70 s-1, and this process results in a charge-transfer intermediate between the flavin hydroquinone anion and NAD (CT). (d) Internal electron transfer from the flavin to the iron-sulfur center, which is only 35 +/- 4 s-1, then results in an intermediate consisting of a reduced [2Fe-2S] center and a neutral flavin semiquinone (SQ). It is surprising that this rate is so slow, since the shortest interatomic distance between these centers is only 4.7 A [Correll, C. C., et al. (1992) Science 258, 1604-1610]. The 2-electron-reduced form of PDR (SQ in Figure 1) binds weakly to the reaction product, NAD (Kd = 3.7 mM), but forms a tight complex with NADH (Kd = 10 microM). (e) Two molecules of the reduced iron-sulfur flavin semiquinone (SQ) form of PDR then undergo a relatively slow second-order disproportionation reaction, resulting in one molecule of 3-electron-reduced PDR and one molecule of 1-electron-reduced PDR. The latter reacts rapidly with excess NADH to form a 3-electron-reduced PDR.
邻苯二甲酸双加氧酶还原酶(PDR)是一种电子转移酶,它含有可从NADH接受氢化物的FMN以及可将电子传递给邻苯二甲酸双加氧酶的[2Fe-2S]中心。通过停流光谱法研究了NADH对PDR的还原作用。使用部分氘代和全氘代NADH的研究数据通过非线性曲线拟合和数值模拟技术进行了分析。这些分析结果表明,PDR的还原半反应由五个不同的动力学阶段组成:(a)NADH结合形成初级米氏复合物(MC-1)(解离常数Kd = 50微摩尔)。(b)酶发生结构变化(116±5秒⁻¹),形成电荷转移复合物(CT-1)。(c)当用(4R)-[2H]NADH(NADD)替代NADH时,反应的下一阶段显示出7.0的氘同位素效应,表明此步骤涉及氢化物转移。从NADH到FMN的氢化物转移速率为70秒⁻¹,此过程产生黄素对苯二酚阴离子与NAD之间的电荷转移中间体(CT)。(d)从黄素到铁硫中心的内部电子转移速率仅为35±4秒⁻¹,随后产生由还原的[2Fe-2S]中心和中性黄素半醌(SQ)组成的中间体。令人惊讶的是,此速率如此之慢,因为这些中心之间最短的原子间距离仅为4.7埃[科雷尔,C.C.等人(1992年)《科学》258卷,1604 - 1610页]。PDR的2电子还原形式(图1中的SQ)与反应产物NAD的结合较弱(Kd = 3.7毫摩尔),但与NADH形成紧密复合物(Kd = 10微摩尔)。(e)然后,两分子PDR的还原铁硫黄素半醌(SQ)形式进行相对缓慢的二级歧化反应,产生一分子3电子还原的PDR和一分子1电子还原的PDR。后者与过量的NADH迅速反应形成3电子还原的PDR。