Neibergall Matthew B, Stubna Audria, Mekmouche Yasmina, Münck Eckard, Lipscomb John D
Department of Biochemistry, Molecular Biology, and Biophysics and Center for Metals in Biocatalysis, University of Minnesota, Minneapolis, Minnesota 55455, USA.
Biochemistry. 2007 Jul 10;46(27):8004-16. doi: 10.1021/bi700120j. Epub 2007 Jun 14.
Rieske dioxygenases catalyze the reductive activation of O2 for the formation of cis-dihydrodiols from unactivated aromatic compounds. It is known that O2 is activated at a mononuclear non-heme iron site utilizing electrons supplied by a nearby Rieske iron sulfur cluster. However, it is controversial whether the reactive species is an Fe(III)-(hydro)peroxo or an Fe(II)-(hydro)peroxo (or electronically equivalent species formed by breaking the O-O bond). Here it is shown that benzoate 1,2 dioxygenase oxygenase component (BZDO) prepared in a form with the Rieske cluster oxidized and the mononuclear iron in the Fe(III) state can utilize H2O2 as a source of reduced oxygen to form the correct cis-dihydrodiol product from benzoate. The reaction approaches stoichiometric yield relative to the mononuclear Fe(III) concentration, being limited to a single turnover by inefficient product release from the Fe(III)-product complex. EPR and Mössbauer studies show that the iron remains ferric throughout this single turnover "peroxide shunt" reaction. These results strongly support Fe(III)-(hydro)peroxo (or Fe(V)-oxo-hydroxo) as the reactive species because there is no source of additional reducing equivalents to form the Fe(II)-(hydro)peroxo state. This conclusion could be further tested in the case of BZDO because the peroxide shunt occurs very slowly compared with normal turnover, allowing the reactive intermediate to be trapped for spectroscopic analysis. We attribute the slow reaction rate to a forced change in the normally strict order of the substrate binding and enzyme reduction steps that regulate the catalytic cycle. The reactive intermediate is a high-spin ferric species exhibiting an unusual negative zero field splitting and other EPR and Mössbauer spectroscopic properties reminiscent of previously characterized side-on-bound peroxide adducts of Fe(III) model complexes. If the species in BZDO is a similar adduct, its isomer shift is most consistent with an Fe(III)-hydroperoxo reactive state.
Rieske双加氧酶催化O₂的还原活化,以便从未活化的芳香族化合物形成顺式二氢二醇。已知O₂在单核非血红素铁位点被活化,利用附近Rieske铁硫簇提供的电子。然而,反应活性物种是Fe(III)-(氢)过氧物种还是Fe(II)-(氢)过氧物种(或通过断开O-O键形成的电子等效物种)存在争议。本文表明,以Rieske簇被氧化且单核铁处于Fe(III)状态的形式制备的苯甲酸1,2-双加氧酶加氧酶组分(BZDO),可以利用H₂O₂作为还原氧的来源,从苯甲酸形成正确的顺式二氢二醇产物。相对于单核Fe(III)浓度,该反应接近化学计量产率,由于Fe(III)-产物复合物释放产物效率低下,反应限于单周转。电子顺磁共振(EPR)和穆斯堡尔谱研究表明,在这个单周转“过氧化物分流”反应过程中铁保持三价。这些结果有力地支持Fe(III)-(氢)过氧物种(或Fe(V)-氧-氢氧物种)作为反应活性物种,因为没有额外的还原当量来源来形成Fe(II)-(氢)过氧状态。在BZDO的情况下,这一结论可以进一步验证,因为与正常周转相比,过氧化物分流发生得非常缓慢,使得反应活性中间体能够被捕获用于光谱分析。我们将反应速率缓慢归因于底物结合和调节催化循环的酶还原步骤的正常严格顺序发生了强制变化。反应活性中间体是一种高自旋三价铁物种,表现出异常的负零场分裂以及其他EPR和穆斯堡尔谱性质,让人联想到先前表征的Fe(III)模型配合物的侧基结合过氧化物加合物。如果BZDO中的物种是类似的加合物,其同质异能位移与Fe(III)-氢过氧反应状态最为一致。