Suppr超能文献

Control of transmitter release from retinal amacrine cells by Ca2+ influx and efflux.

作者信息

Gleason E, Borges S, Wilson M

机构信息

Division of Biological Sciences, University of California, Davis 95616.

出版信息

Neuron. 1994 Nov;13(5):1109-17. doi: 10.1016/0896-6273(94)90049-3.

Abstract

Cultured retinal amacrine cells show quantal GABAergic synaptic transmission. Voltage clamping pre- and post-synaptic cells of an isolated pair has allowed us to examine the entry and removal of Ca2+ at synaptic terminals. Brief presynaptic Ca2+ currents elicit an initial postsynaptic current that probably reflects the roughly synchronous exocytosis of docked vesicles. Prolonged Ca2+ currents elicit an additional second phase of release whose time course can greatly exceed that of the presynaptic voltage step. The time course of this second phase reflects a sustained increase in cytosolic Ca2+ and is matched closely by the activity of the presynaptic Na-Ca exchanger, as revealed by an exchange current. Eliminating the activity of the exchanger by removal of external Na+ prolongs this second phase of transmission greatly. Because transmitter release at these synapses outlasts Ca+ channel opening, Na-Ca exchange plays a significant role in shaping transmission.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验