Suppr超能文献

Targeted deletion of psaJ from the cyanobacterium Synechocystis sp. PCC 6803 indicates structural interactions between the PsaJ and PsaF subunits of photosystem I.

作者信息

Xu Q, Odom W R, Guikema J A, Chitnis V P, Chitnis P R

机构信息

Division of Biology, Kansas State University, Manhattan 66506-4901.

出版信息

Plant Mol Biol. 1994 Oct;26(1):291-302. doi: 10.1007/BF00039540.

Abstract

Photosystem I catalyzes the light-driven oxidation of plastocyanin or cytochrome c6 and the reduction of ferredoxin or flavodoxin. PsaJ is a 4.4 kDa hydrophobic subunit of photosystem I from cyanobacteria and chloroplasts. To investigate the function of PsaJ, we generated a mutant strain of the cyanobacterium Synechocystis sp. PCC 6803 in which the psaJ gene is replaced by a gene for chloramphenicol resistance. Deletion of psaJ led to a reduction in the steady state RNA level from psaF which is located upstream from psaJ. Immunoquantification using an anti-PsaF antibody revealed a significant decrease in the amount of PsaF in membranes of the mutant strain. Trimeric photosystem I complexes isolated from the mutant strain using n-dodecyl beta-D-maltoside lacked PsaJ, contained ca. 80% less PsaF, but maintained wild-type levels of other photosystem I subunits. In contrast, the photosystem I purified using Triton X-100 contained less than 2% PsaF when compared to the wild type, showing the more extractable nature of PsaF in PsaJ-less photosystem I in the presence of Triton X-100. PsaE was more accessible to removal by NaI in a mutant strain lacking PsaF and PsaJ than in the wild type. The presence of PsaF in photosystem I from the PsaJ-less strain did not alter the increased susceptibility of PsaE to removal by NaI. These results indicate an interaction between PsaJ and PsaF in the organization of the complex.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验