Suppr超能文献

Characteristics of the nitric oxide synthase-catalyzed conversion of arginine to N-hydroxyarginine, the first oxygenation step in the enzymic synthesis of nitric oxide.

作者信息

Campos K L, Giovanelli J, Kaufman S

机构信息

Laboratory of Neurochemistry, National Institute of Mental Health, Bethesda, Maryland 20895.

出版信息

J Biol Chem. 1995 Jan 27;270(4):1721-8. doi: 10.1074/jbc.270.4.1721.

Abstract

The nitric oxide synthase-catalyzed conversion of L-arginine to L-citrulline and nitric oxide is known to be the sum of two partial reactions: oxygenation of arginine to N-hydroxyarginine, followed by oxygenation of N-hydroxyarginine to citrulline and nitric oxide. Whereas the conversion of N-hydroxyarginine to citrulline and nitric oxide has been the subject of a number of studies, the oxygenation of arginine to N-hydroxyarginine has received little attention. Here we show that substrate amounts of rat cerebellar nitric oxide synthase, in the absence of added NADPH, catalyze the conversion of arginine to N-hydroxyarginine as the dominant product. The product appears not to be tightly bound to the enzyme. A maximum of 0.16 mol of N-hydroxyarginine/mol of nitric oxide synthase subunit was formed. The reaction requires oxygen and the addition of Ca2+/calmodulin and is stimulated 3-fold by tetrahydrobiopterin. Upon addition of NADPH, citrulline is formed exclusively. Conversion of N-hydroxyarginine to citrulline, like the first partial reaction, requires Ca2+/calmodulin and is stimulated by tetrahydrobiopterin but differs from the first partial reaction in being completely dependent upon addition of NADPH. These results indicate that brain nitric oxide synthase contains an endogenous reductant that can support oxygenation of arginine but not of N-hydroxyarginine. The reductant is not NADPH, since the amount of nitric oxide synthase-bound NADPH is appreciably less than the amount required for N-hydroxyarginine synthesis. Possible candidates for this role are discussed in relation to proposed mechanisms of action of nitric oxide synthase.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验