Heinzel B, John M, Klatt P, Böhme E, Mayer B
Institut für Pharmakologie, Freie Universität Berlin, Federal Republic of Germany.
Biochem J. 1992 Feb 1;281 ( Pt 3)(Pt 3):627-30. doi: 10.1042/bj2810627.
L-Arginine-derived nitric oxide (NO) acts as an inter- and intra-cellular signal molecule in many mammalian tissues including brain, where it is formed by a flavin-containing Ca2+/calmodulin-requiring NO synthase with NADPH, tetrahydrobiopterin (H4biopterin) and molecular oxygen as cofactors. We found that purified brain NO synthase acted as a Ca2+/calmodulin-dependent NADPH:oxygen oxidoreductase, catalysing the formation of hydrogen peroxide at suboptimal concentrations of L-arginine or H4biopterin, which inhibited the hydrogen peroxide formation with half-maximal effects at 11 microM and 0.3 microM respectively. Half-maximal rates of L-citrulline formation were observed at closely similar concentrations of these compounds, indicating that the NO synthase-catalysed oxygen activation was coupled to the synthesis of L-citrulline and NO in the presence of L-arginine and H4biopterin. N omega-Nitro-L-arginine, its methyl ester and N omega-monomethyl-L-arginine inhibited the synthesis of L-citrulline from L-arginine (100 microM) with half-maximal effects at 0.74 microM, 2.8 microM and 15 microM respectively. The N omega-nitro compounds also blocked the substrate-independent generation of hydrogen peroxide, whereas N omega-monomethyl-L-arginine did not affect this reaction. According to these results, activation of brain NO synthase by Ca2+ at subphysiological levels of intracellular L-arginine or H4biopterin may result in the formation of reactive oxygen species instead of NO, and N omega-nitro-substituted L-arginine analogues represent useful tools to effectively block NO synthase-catalysed oxygen activation.
L-精氨酸衍生的一氧化氮(NO)在包括大脑在内的许多哺乳动物组织中作为细胞间和细胞内信号分子发挥作用。在大脑中,它由一种含黄素、需要Ca2+/钙调蛋白的一氧化氮合酶形成,该酶以NADPH、四氢生物蝶呤(H4biopterin)和分子氧作为辅因子。我们发现,纯化的大脑一氧化氮合酶作为一种Ca2+/钙调蛋白依赖性NADPH:氧氧化还原酶,在L-精氨酸或H4biopterin亚最佳浓度下催化过氧化氢的形成,这两种物质分别在11 microM和0.3 microM时对过氧化氢形成具有半数最大抑制作用。在这些化合物浓度非常相似时观察到L-瓜氨酸形成的半数最大速率,表明在L-精氨酸和H4biopterin存在的情况下,一氧化氮合酶催化的氧活化与L-瓜氨酸和NO的合成偶联。Nω-硝基-L-精氨酸、其甲酯和Nω-单甲基-L-精氨酸抑制从L-精氨酸(100 microM)合成L-瓜氨酸,半数最大抑制作用分别为0.74 microM、2.8 microM和15 microM。Nω-硝基化合物也阻断了与底物无关的过氧化氢生成,而Nω-单甲基-L-精氨酸不影响该反应。根据这些结果,在细胞内L-精氨酸或H4biopterin亚生理水平下,Ca2+激活大脑一氧化氮合酶可能导致活性氧的形成而非NO的形成,并且Nω-硝基取代的L-精氨酸类似物是有效阻断一氧化氮合酶催化的氧活化的有用工具。