Suppr超能文献

Changes of cell cycle-regulating genes in interferon-treated Daudi cells.

作者信息

Yamada H, Ochi K, Nakada S, Nemoto T, Horiguchi-Yamada J

机构信息

Department of Internal Medicine, Aoto Hospital, Jikei University School of Medicine, Tokyo, Japan.

出版信息

Mol Cell Biochem. 1994 Jul 27;136(2):117-23. doi: 10.1007/BF00926071.

Abstract

Interferon (IFN) modulates the expression of several genes and some of them are considered to be responsible for the inhibition of cellular growth. However, the alterations of cell cycle-regulating genes produced by IFN still remain unclear. Accordingly, we studied the expression of cell cycle-regulating genes during IFN-induced growth arrest. Cell cycle synchronized and unsynchronized Daudi Burkitt lymphoma cells were treated with IFN. Both the cell cycle distribution and the expression of cell cycle-regulating genes (cdk2, cdc2, cyclins A, B, C, D3, cdc25, and wee 1) were studied by flow cytometry and by Northern blot hybridization or the reverse-transcription polymerase chain reaction, respectively. Treated cells passed through the first G1 phase and gradually accumulated in the following G1 phase. Expression of cyclins A, B, and D3 oscillated along with the cell cycle progression in control cells, and the alterations of cyclin B expression were especially prominent. Both cdc2 and cdk2 also showed changes, but these were not so distinct as observed with cyclin B. Expression of cdc25 and wee1 was little affected by cell cycle progression. In IFN-treated cells, expression of cyclins A and B were down-regulated, while that of cyclin C was not. Cyclin D3 expression was also down-regulated at 48 h, followed by an increase at 72 h. Expression of both cdc2 and cdk2 was down-regulated, especially that of the later. Wee1 expression was down-regulated by IFN but, the expression of cdc25 remained stable. These findings suggest that the modulation of cell cycle-regulating genes, particular by cyclin A and cdk2, plays an important role in IFN-induced cellular growth arrest.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验