Suppr超能文献

[星形细胞瘤/胶质母细胞瘤组胶质瘤的计算机辅助分级]

[Computer assisted grading of gliomas of the astrocytoma/glioblastoma groups].

作者信息

Kolles H, von Wangenheim A, Niedermayer I, Vince G H, Feiden W

机构信息

Abteilung für Neuropathologie, Universitätskliniken des Saarlandes, Homburg/Saar.

出版信息

Verh Dtsch Ges Pathol. 1994;78:427-31.

PMID:7534014
Abstract

For automated astrocytoma grading morphometric parameters are determined by means of an image analysis system and a special Ki-67(MIB1)/Feulgen-staining method allowing the quantification of the essential characteristics of malignant gliomas: growth pattern, cellularity, proliferation index and nucleus pleomorphism. Based upon a cluster analytical approach a grading scale resembling the WHO-scheme is established which is suitable for automatic glioma grading purposes (HOM-scale). For automatic glioma grading backpropagation neural networks are employed. The results are compared with those of a classical multivariate discriminant classificatory analysis. The presented approach can also be employed for automatic grading of other tumour entities.

摘要

对于自动星形细胞瘤分级,形态计量学参数通过图像分析系统和一种特殊的Ki-67(MIB1)/福尔根染色方法来确定,该方法可对恶性胶质瘤的基本特征进行量化:生长模式、细胞密度、增殖指数和核多形性。基于聚类分析方法,建立了一种类似于WHO方案的分级量表,适用于自动胶质瘤分级目的(HOM量表)。对于自动胶质瘤分级,采用反向传播神经网络。将结果与经典多元判别分类分析的结果进行比较。所提出的方法也可用于其他肿瘤实体的自动分级。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验