Preston R R, Kung C
Laboratory of Molecular Biology, University of Wisconsin-Madison 53706.
J Membr Biol. 1994 May;139(3):203-13. doi: 10.1007/BF00232624.
"Eccentric" is a newly-isolated mutant of Paramecium tetraurelia that fails to swim backwards in response to Mg2+. In the wild type, this backward swimming results from Mg2+ influx via a Mg(2+)-specific ion conductance (IMg). Voltage-clamp analysis confirmed that, as suspected, step changes in membrane potential over a physiological range fail to elicit IMg from eccentric. Further electrophysiological investigation revealed a number of additional ion-current defects in eccentric: (i) The Ca2+ current activated upon depolarization inactivates more slowly in eccentric than in the wild type, and it requires longer to recover from this inactivation. (ii) The Ca(2+)-dependent Na+ current deactivates significantly faster in the mutant. (iii) The two K+ currents observed upon hyperpolarization are reduced by > 60% in eccentric. It is difficult to envision how these varied pleiotropic effects could result from loss of a single ion current. Rather, they suggest that the eccentric mutation affects a global regulatory system. Two plausible hypotheses are discussed.
“偏心”是一种新分离出的四膜虫突变体,它无法响应Mg2+向后游动。在野生型中,这种向后游动是由Mg2+通过Mg(2+)特异性离子电导(IMg)内流引起的。电压钳分析证实,正如所怀疑的那样,在生理范围内膜电位的阶跃变化无法从“偏心”突变体中引发IMg。进一步的电生理研究揭示了“偏心”突变体中一些额外的离子电流缺陷:(i)去极化时激活的Ca2+电流在“偏心”突变体中比在野生型中失活更慢,并且从这种失活中恢复需要更长时间。(ii)突变体中Ca(2+)依赖性Na+电流的失活明显更快。(iii)超极化时观察到的两种K+电流在“偏心”突变体中减少了>60%。很难想象这些多样的多效性效应如何能由单一离子电流的丧失导致。相反,它们表明“偏心”突变影响了一个全局调节系统。文中讨论了两个合理的假设。